-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_arcface.py
178 lines (158 loc) · 7.22 KB
/
main_arcface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import sys
import json
import argparse
from pprint import pprint
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import utils.utils as utils
import utils.config as config
from train_arcface import train, evaluate
import modules.base_model_arcface as base_model
from utils.dataset import Dictionary, VQAFeatureDataset
from utils.losses import Plain
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=30,
help='number of running epochs')
parser.add_argument('--lr', type=float, default=0.002,
help='learning rate for adamax')
parser.add_argument('--loss-fn', type=str, default='Plain',
help='chosen loss function')
parser.add_argument('--num-hid', type=int, default=1024,
help='number of dimension in last layer')
parser.add_argument('--model', type=str, default='baseline_newatt',
help='model structure')
parser.add_argument('--name', type=str, default='exp0.pth',
help='saved model name')
parser.add_argument('--name-new', type=str, default=None,
help='combine with fine-tune')
parser.add_argument('--batch-size', type=int, default=512,
help='training batch size')
parser.add_argument('--fine-tune', action='store_true',
help='fine tuning with our loss')
parser.add_argument('--resume', action='store_true',
help='whether resume from checkpoint')
parser.add_argument('--not-save', action='store_true',
help='do not overwrite the old model')
parser.add_argument('--test', dest='test_only', action='store_true',
help='test one time')
parser.add_argument('--eval-only', action='store_true',
help='evaluate on the val set one time')
parser.add_argument("--gpu", type=str, default='0',
help='gpu card ID')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
print(args)
print_keys = ['cp_data', 'version', 'train_set',
'loss_type', 'use_cos', 'entropy', 'scale']
print_dict = {key: getattr(config, key) for key in print_keys}
pprint(print_dict, width=150)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
cudnn.benchmark = True
seed = 1111
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = True
if 'log' not in args.name:
args.name = 'logs/' + args.name
if args.test_only or args.fine_tune or args.eval_only:
args.resume = True
if args.resume and not args.name:
raise ValueError("Resuming requires folder name!")
if args.resume:
logs = torch.load(args.name)
print("loading logs from {}".format(args.name))
# ------------------------DATASET CREATION--------------------
dictionary = Dictionary.load_from_file(config.dict_path)
if args.test_only:
eval_dset = VQAFeatureDataset('test', dictionary)
else:
train_dset = VQAFeatureDataset('train', dictionary)
eval_dset = VQAFeatureDataset('val', dictionary)
if config.train_set == 'train+val' and not args.test_only:
train_dset = train_dset + eval_dset
eval_dset = VQAFeatureDataset('test', dictionary)
if args.eval_only:
eval_dset = VQAFeatureDataset('val', dictionary)
tb_count = 0
writer = SummaryWriter() # for visualization
if not config.train_set == 'train+val' and 'LM' in args.loss_fn:
utils.append_bias(train_dset, eval_dset, len(eval_dset.label2ans))
# ------------------------MODEL CREATION------------------------
constructor = 'build_{}'.format(args.model)
model, metric_fc = getattr(base_model, constructor)(eval_dset, args.num_hid)
model = model.cuda()
metric_fc = metric_fc.cuda()
model.w_emb.init_embedding(config.glove_embed_path)
# model = nn.DataParallel(model).cuda()
optim = torch.optim.Adamax([{'params': model.parameters()}, {'params': metric_fc.parameters()}], lr=args.lr)
if args.loss_fn == 'Plain':
loss_fn = Plain()
else:
raise RuntimeError('not implement for {}'.format(args.loss_fn))
# ------------------------STATE CREATION------------------------
eval_score, best_val_score, start_epoch, best_epoch = 0.0, 0.0, 0, 0
tracker = utils.Tracker()
if args.resume:
model.load_state_dict(logs['model_state'])
metric_fc.load_state_dict(logs['margin_model_state'])
optim.load_state_dict(logs['optim_state'])
if 'loss_state' in logs:
loss_fn.load_state_dict(logs['loss_state'])
start_epoch = logs['epoch']
best_epoch = logs['epoch']
best_val_score = logs['best_val_score']
if args.fine_tune:
print('best accuracy is {:.2f} in baseline'.format(100 * best_val_score))
args.epochs = start_epoch + 10 # 10 more epochs
for params in optim.param_groups:
params['lr'] = config.ft_lr
# if you want save your model with a new name
if args.name_new:
if 'log' not in args.name_new:
args.name = 'logs/' + args.name_new
else:
args.name = args.name_new
eval_loader = DataLoader(eval_dset,
args.batch_size, shuffle=False, num_workers=4)
if args.test_only or args.eval_only:
model.eval()
metric_fc.eval()
evaluate(model, metric_fc, eval_loader, write=True)
else:
train_loader = DataLoader(
train_dset, args.batch_size, shuffle=True, num_workers=4)
for epoch in range(start_epoch, args.epochs):
print("training epoch {:03d}".format(epoch))
tb_count = train(model, metric_fc, optim, train_loader, loss_fn, tracker, writer, tb_count, epoch, args)
if not (config.train_set == 'train+val' and epoch in range(args.epochs - 3)):
# save for the last three epochs
write = True if config.train_set == 'train+val' else False
print("validating after epoch {:03d}".format(epoch))
model.train(False)
metric_fc.train(False)
eval_score = evaluate(model, metric_fc, eval_loader, epoch, write=write)
model.train(True)
metric_fc.train(True)
print("eval score: {:.2f} \n".format(100 * eval_score))
#if eval_score > best_val_score:
best_val_score = eval_score
best_epoch = epoch
results = {
'epoch': epoch + 1,
'best_val_score': best_val_score,
'model_state': model.state_dict(),
'optim_state': optim.state_dict(),
'loss_state': loss_fn.state_dict(),
'margin_model_state': metric_fc.state_dict()
}
if not args.not_save:
torch.save(results, args.name)
print("best accuracy {:.2f} on epoch {:03d}".format(
100 * best_val_score, best_epoch))