This repository has been archived by the owner on Jun 16, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSVD.py
154 lines (124 loc) · 4.81 KB
/
SVD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import math
import matplotlib.image as image
import numpy.linalg as eigens
import numpy as np
import cv2 as cv
from PIL import Image as im
from math import isclose
import concurrent.futures
import time
def SVD(img):
#img = np.array([[1,0,1],[-2,1,0]])
mode = ''
if np.argmin(np.asarray(img.shape).flatten()) == 0:
mode = 'U'
img = np.transpose(img)
else:
mode = 'V' #imgimgT result in V
imgTimg = np.dot(np.transpose(img), img)
a = imgTimg
eigArr,eigVec = eigens.eig(a) #Calculate eigenvalue and eigenVector eigArr nx1 eigVec mxn
eigArr = np.abs(eigArr) #eigen = singularvalue ^2 => singularvalue
i = eigArr.argsort()[::-1] #[::-1] reverse the sort order,argsort return index array
eigArr = eigArr[i]
#rank = int(np.array(np.where(eigArr>0)[0])[-2:-1:1]) #Take last index where eigArr > 0
# if len(np.array(np.where(eigArr > 0)[0])) == 0:
# rank = int(np.array(np.where(eigArr == 0)[0])[0])
# else:
# rank = int(np.array(np.where(eigArr > 0)[0])[-2:-1:1])
smallestPositiveEign = min(a for a in eigArr[::-1] if a > 0) #Gia tri rieng nho nhat A^TA (nxn)=> rank <=n
eigArr = np.real(eigArr) #Due to finite precision, there might be complex numbers
# lenEig = len(eigArr)
# for e in eigArr[::-1]:
# if math.isclose(smallestPositiveEign,e,rel_tol=0.0001):
# rank = lenEig
# break
# else:
# lenEig-=1
rank = len(eigArr) -10
# rankApprox = len(eigArr)
# SumeigSquare = sum(np.square(eigArr))
# for o in range(1,len(eigArr)):
# num = sum(np.square(eigArr[:o]))/SumeigSquare
# if num >= 0.95:
# rankApprox = o
# break
# print(rankApprox)
# rank = rankApprox
eigArr = np.sqrt(eigArr[:rank]) #rank x 1
eigVec = eigVec[:,i]
#eigVec = eigVec[:,:rank]
eigVec = np.real(eigVec) #Due to finite precision, there might be complex numbers, cast from i to real numbers
sigma = np.diag(eigArr) #Turn eigArr to matrix with eigArr on its diagonal rank x rank
sigma = np.pad(sigma,((0,0),(0,img.shape[1]-sigma.shape[1])),mode='constant',constant_values=0) #Fill sigma with zeros so the matrix has size rankxn
U = np.empty(shape=(img.shape[0],rank)) #Intilize matrix U with size mxrank
U.fill(0)
V = eigVec
# for i in range(0,rank):
# U[:,i] = (1/eigArr[i])*np.dot(img,V[:,i])
eigArrclone = np.array([eigArr,]*img.shape[0]) #Turn size rankx1 to rankxm by cloning by its column
U = np.divide(np.dot(img,V[:,:rank]),eigArrclone)
imgg = np.dot(np.dot(U, sigma), np.transpose(V)) #U x sigma x V (mxm mxn x nxn) => mxn (mxrank rankxn nxn) => mxn
if mode == 'U':
imgg = np.transpose(imgg)
imgg = np.real(imgg)
#print(imgg)
imgg = np.where(imgg<0,0,imgg)
data = im.fromarray(imgg).convert('L')
return data
#SVD(np.array(cv.cvtColor(cv.imread('Example-of-denoising-results-of-a-part-of-the-image-Cameraman-a-Noisy-image-Peak5.png'),code=cv.COLOR_BGR2GRAY)))
# imgMatrix = np.array(cv.imread('a.png'))
# imgMatrixB = imgMatrix[:,:,0]
# imgMatrixG = imgMatrix[:,:,1]
# imgMatrixR = imgMatrix[:,:,2]
# bChannel = SVD(imgMatrixB)
# gChannel = SVD(imgMatrixG)
# rChannel = SVD(imgMatrixR)
# #
# rgb = np.dstack((bChannel,gChannel,rChannel))
# print(rgb.shape)
# image = im.fromarray(rgb).convert('RGB')
# cv.imshow('RGB',np.array(image))
# cv.waitKey(0)
cap = cv.VideoCapture(0) #Index 0 webcam
i=0
while True:
i+=1
if cv.waitKey(1) == ord('q'):
break
success,frame = cap.read()
if not success:
break
frame = cv.resize(frame,dsize=None,fx=0.6,fy=0.6)
imgMatrix = np.array(frame)
imgMatrixB = imgMatrix[:, :, 0]
imgMatrixG = imgMatrix[:, :, 1]
imgMatrixR = imgMatrix[:, :, 2]
start = time.time()
#MultiThreading
# try:
with concurrent.futures.ThreadPoolExecutor() as executor:
futureB = executor.submit(SVD,imgMatrixB)
futureG = executor.submit(SVD,imgMatrixG)
futureR = executor.submit(SVD,imgMatrixR)
rgb = np.dstack((futureB.result(),futureG.result(),futureR.result()))
# except:
# print()
#Single threading
# bChannel = SVD(imgMatrixB)
# gChannel = SVD(imgMatrixG)
# rChannel = SVD(imgMatrixR)
# rgb = np.dstack((bChannel,gChannel,rChannel))
image = im.fromarray(rgb).convert('RGB')
end = time.time()
seconds = end - start
font = cv.FONT_HERSHEY_PLAIN
org = (10, 50)
fontScale = 2
color = (238, 75, 43)
thickness = 2
imm = np.array(image)
cv.putText(imm,str(1/seconds), org, font, fontScale, color, thickness, cv.LINE_AA)
cv.imshow('RGB', imm)
cap.release()
cv.destroyAllWindows()