-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
65 lines (46 loc) · 1.64 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from utils.metrics import Evaluator
from utils.cityscapes import get_data_loader
from utils.evaluate import eval_model
import torch
import torch.nn as nn
from models.bisenetv2 import BiSeNetV2
import numpy as np
import torch.distributed as dist
from utils.lr_scheduler import WarmupPolyLrScheduler
from train import validate_model
from train import get_check_point
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
np.random.seed(50)
torch.manual_seed(50)
if torch.cuda.is_available():
torch.cuda.manual_seed(50)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if __name__== "__main__":
from tqdm import tqdm
from torch.utils.data import DataLoader
import torchvision.transforms as T
from PIL import Image
dl = get_data_loader(datapth='cityscapes',annpath='cityscapes/val.txt',batch_size=8,mode='val')
net = BiSeNetV2(19)
optimizer = torch.optim.Adam(net.parameters(),5e-4,(0.9, 0.999), eps=1e-08, weight_decay=5e-4)
lr_schdr = WarmupPolyLrScheduler(optimizer, power=0.9,
max_iter=150000, warmup_iter=1000,
warmup_ratio=0.1, warmup='exp', last_epoch=-1,)
net, optimizer,lr_schdr,epoch, max_miou = get_check_point(
'./pretrained_models/BiSeNetv2_epoch_343_acc_0.5937.pt',
net,
optimizer,
lr_schdr,
device
)
is_dist = dist.is_initialized()
if is_dist:
local_rank = dist.get_rank()
net = nn.parallel.DistributedDataParallel(
net,
device_ids=[local_rank, ],
output_device=local_rank
)
miou = eval_model(net,dl)
print(miou)