-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmultiselectTimingFunctions.cu
231 lines (174 loc) · 6.58 KB
/
multiselectTimingFunctions.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/* Based on timingFunctions.cu */
#include <stdlib.h>
#define MAX_THREADS_PER_BLOCK 1024
#define CUDA_CALL(x) do { if((x) != cudaSuccess) { \
printf("Error at %s:%d\n",__FILE__,__LINE__); \
return EXIT_FAILURE;}} while(0)
template <typename T>
struct results_t {
float time;
T * vals;
};
template <typename T>
void setupForTiming(cudaEvent_t &start, cudaEvent_t &stop, T * h_vec, T ** d_vec, results_t<T> ** result, uint numElements, uint kCount) {
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaMalloc(d_vec, numElements * sizeof(T));
cudaMemcpy(*d_vec, h_vec, numElements * sizeof(T), cudaMemcpyHostToDevice);
*result = (results_t<T> *) malloc (sizeof (results_t<T>));
(*result)->vals = (T *) malloc (kCount * sizeof (T));
}
template <typename T>
void wrapupForTiming(cudaEvent_t &start, cudaEvent_t &stop, float time, results_t<T> * result) {
result->time = time;
cudaEventDestroy(start);
cudaEventDestroy(stop);
// cudaDeviceSynchronize();
}
/////////////////////////////////////////////////////////////////
// THE SORT AND CHOOSE TIMING FUNCTION
/////////////////////////////////////////////////////////////////
template <typename T>
__global__ void copyInChunk(T * outputVector, T * inputVector, uint * kList, uint kListCount, uint numElements) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < kListCount)
outputVector[idx] = inputVector[numElements - kList[idx]];
}
template<typename T>
results_t<T>* timeSortAndChooseMultiselect(T * h_vec, uint numElements, uint * kVals, uint kCount) {
T * d_vec;
results_t<T> * result;
float time;
cudaEvent_t start, stop;
setupForTiming(start, stop, h_vec, &d_vec, &result, numElements, kCount);
cudaEventRecord(start, 0);
thrust::device_ptr<T> dev_ptr(d_vec);
thrust::sort(dev_ptr, dev_ptr + numElements);
/*
for (int i = 0; i < kCount; i++)
cudaMemcpy(result->vals + i, d_vec + (numElements - kVals[i]), sizeof (T), cudaMemcpyDeviceToHost);
*/
T * d_output;
uint * d_kList;
cudaMalloc (&d_output, kCount * sizeof (T));
cudaMalloc (&d_kList, kCount * sizeof(uint));
cudaMemcpy (d_kList, kVals, kCount * sizeof (uint), cudaMemcpyHostToDevice);
int threads = MAX_THREADS_PER_BLOCK;
if (kCount < threads)
threads = kCount;
int blocks = (int) ceil (kCount / (float) threads);
copyInChunk<T><<<blocks, threads>>>(d_output, d_vec, d_kList, kCount, numElements);
cudaMemcpy (result->vals, d_output, kCount * sizeof (T), cudaMemcpyDeviceToHost);
//printf("first result: %u \n", result->vals);
cudaFree(d_output);
cudaFree(d_kList);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
wrapupForTiming(start, stop, time, result);
cudaFree(d_vec);
return result;
}
// FUNCTION TO TIME BUCKET MULTISELECT
template<typename T>
results_t<T>* timeBucketMultiselect (T * h_vec, uint numElements, uint * kVals, uint kCount) {
T * d_vec;
results_t<T> * result;
float time;
cudaEvent_t start, stop;
cudaDeviceProp dp;
cudaGetDeviceProperties(&dp, 0);
setupForTiming(start, stop, h_vec, &d_vec, &result, numElements, kCount);
cudaEventRecord(start, 0);
// bucketMultiselectWrapper (T * d_vector, int length, uint * kVals_ori, uint kCount, T * outputs, int blocks, int threads)
BucketMultiselect::bucketMultiselectWrapper(d_vec, numElements, kVals, kCount, result->vals, dp.multiProcessorCount, dp.maxThreadsPerBlock);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
wrapupForTiming(start, stop, time, result);
cudaFree(d_vec);
return result;
}
// FUNCTION TO TIME NAIVE BUCKET MULTISELECT
template<typename T>
results_t<T>* timeNaiveBucketMultiselect (T * h_vec, uint numElements, uint * kVals, uint kCount) {
T * d_vec;
results_t<T> * result;
float time;
cudaEvent_t start, stop;
setupForTiming(start, stop, h_vec, &d_vec, &result, numElements, kCount);
cudaEventRecord(start, 0);
thrust::device_ptr<T> dev_ptr(d_vec);
thrust::sort(dev_ptr, dev_ptr + numElements);
for (int i = 0; i < kCount; i++)
cudaMemcpy(result->vals + i, d_vec + (numElements - kVals[i]), sizeof (T), cudaMemcpyDeviceToHost);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
wrapupForTiming(start, stop, time, result);
cudaFree(d_vec);
return result;
}
/***************************************
********* TOP K SELECT
****************************************/
template<typename T>
results_t<T>* timeSortAndChooseTopkselect(T * h_vec, uint numElements, uint kCount) {
T * d_vec;
results_t<T> * result;
float time;
cudaEvent_t start, stop;
setupForTiming(start, stop, h_vec, &d_vec, &result, numElements, kCount);
cudaEventRecord(start, 0);
thrust::device_ptr<T> dev_ptr(d_vec);
thrust::sort(dev_ptr, dev_ptr + numElements, thrust::greater<T>());
cudaMemcpy(result->vals, d_vec, kCount * sizeof(T), cudaMemcpyDeviceToHost);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
wrapupForTiming(start, stop, time, result);
cudaFree(d_vec);
return result;
}
// FUNCTION TO TIME RANDOMIZED TOP K SELECT
template<typename T>
results_t<T>* timeRandomizedTopkselect (T * h_vec, uint numElements, uint kCount) {
T * d_vec;
results_t<T> * result;
float time;
cudaEvent_t start, stop;
cudaDeviceProp dp;
cudaGetDeviceProperties(&dp, 0);
setupForTiming(start, stop, h_vec, &d_vec, &result, numElements, kCount);
cudaEventRecord(start, 0);
result->vals = randomizedTopkSelectWrapper(d_vec, numElements, kCount);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
wrapupForTiming(start, stop, time, result);
cudaFree(d_vec);
return result;
}
// FUNCTION TO TIME BUCKET TOP K SELECT
template<typename T>
results_t<T>* timeBucketTopkselect (T * h_vec, uint numElements, uint kCount) {
// initialize ks
uint * kVals = (uint *) malloc(kCount*sizeof(T));
for (uint i = 0; i < kCount; i++)
kVals[i] = i+1;
T * d_vec;
results_t<T> * result;
float time;
cudaEvent_t start, stop;
cudaDeviceProp dp;
cudaGetDeviceProperties(&dp, 0);
setupForTiming(start, stop, h_vec, &d_vec, &result, numElements, kCount);
cudaEventRecord(start, 0);
BucketMultiselect::bucketMultiselectWrapper(d_vec, numElements, kVals, kCount, result->vals, dp.multiProcessorCount, dp.maxThreadsPerBlock);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
wrapupForTiming(start, stop, time, result);
cudaFree(d_vec);
return result;
}