-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNavierStokes_Re6.jl
253 lines (233 loc) · 8.02 KB
/
NavierStokes_Re6.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
const USE_GPU = true
using ParallelStencil
using ParallelStencil.FiniteDifferences2D
@static if USE_GPU
@init_parallel_stencil(CUDA, Float64, 2)
else
@init_parallel_stencil(Threads, Float64, 2)
end
using LinearAlgebra, Printf
using MAT, Plots
@views function runme(; n=1, do_vis=true, do_save=false)
# physics
## dimensionally independent
ly = 1.0 # [m]
ρ = 1.0 # [kg/m^3]
vin = 1.0 # [m/s]
## scales
psc = ρ*vin^2
## nondimensional parameters
Re = 1e6 # rho*vsc*ly/μ
Fr = Inf # vsc/sqrt(g*ly)
lx_ly = 0.6 # lx/ly
a_ly = 0.05 # rad/ly
b_ly = 0.05 # rad/ly
ox_ly = 0.05
oy_ly = -0.4
β = 0*π/6
## dimensionally dependent
lx = lx_ly*ly
ox = ox_ly*ly
oy = oy_ly*ly
μ = 1/Re*ρ*vin*ly
g = 1/Fr^2*vin^2/ly
a2 = (a_ly*ly)^2
b2 = (b_ly*ly)^2
sinβ,cosβ = sincos(β)
# numerics
ny = n*256-1
nx = n*160-1 #ceil(Int,ny*lx_ly)
εit = 1e-3
niter = 50*nx
nchk = 4*(nx-1)
nvis = 50
nt = 10000
nsave = 50
CFLτ = 0.9/sqrt(2)
CFL_visc = 1/4.1
CFL_adv = 1.0
# preprocessing
dx,dy = lx/nx,ly/ny
dt = min(CFL_visc*dy^2*ρ/μ,CFL_adv*dy/vin)
damp = 2/ny
dτ = CFLτ*dy
xc,yc = LinRange(-(lx-dx)/2,(lx-dx)/2,nx ),LinRange(-(ly-dy)/2,(ly-dy)/2,ny )
xv,yv = LinRange(-lx/2 ,lx/2 ,nx+1),LinRange(-ly/2 ,ly/2 ,ny+1)
# allocation
Pr = @zeros(nx ,ny )
dPrdτ = @zeros(nx-2,ny-2)
C = @zeros(nx ,ny )
C_o = @zeros(nx ,ny )
τxx = @zeros(nx ,ny )
τyy = @zeros(nx ,ny )
τxy = @zeros(nx-1,ny-1)
Vx = @zeros(nx+1,ny )
Vy = @zeros(nx ,ny+1)
Vx_o = @zeros(nx+1,ny )
Vy_o = @zeros(nx ,ny+1)
∇V = @zeros(nx ,ny )
Rp = @zeros(nx-2,ny-2)
# init
Vprof = Data.Array([4*vin*x/lx*(1.0-x/lx) for x=LinRange(0.5dx,lx-0.5dx,nx,)])
Vy[:,1] .= Vprof
Pr .= .-(yc'.-ly/2).*ρ.*g
if do_save !ispath("./out_vis") && mkdir("./out_vis"); matwrite("out_vis/step_0.mat",Dict("Pr"=>Array(Pr),"Vx"=>Array(Vx),"Vy"=>Array(Vy),"C"=>Array(C),"dx"=>dx,"dy"=>dy)) end
# action
for it = 1:nt
err_evo = Float64[]; iter_evo = Float64[]
@parallel update_τ!(τxx,τyy,τxy,Vx,Vy,μ,dx,dy)
@parallel predict_V!(Vx,Vy,τxx,τyy,τxy,ρ,g,dt,dx,dy)
@parallel set_sphere!(C,Vx,Vy,a2,b2,ox,oy,sinβ,cosβ,lx,ly,dx,dy)
@parallel update_∇V!(∇V,Vx,Vy,dx,dy)
println("#it = $it")
for iter = 1:niter
@parallel update_dPrdτ!(Pr,dPrdτ,∇V,ρ,dt,dτ,damp,dx,dy)
@parallel update_Pr!(Pr,dPrdτ,dτ)
set_bc_Pr!(Pr, 0.0)
if iter % nchk == 0
@parallel compute_res!(Rp,Pr,∇V,ρ,dt,dx,dy)
err = maximum(abs.(Rp))*ly^2/psc
push!(err_evo, err); push!(iter_evo,iter/ny)
@printf(" #iter = %d, err = %1.3e\n", iter, err)
if err < εit || !isfinite(err) break end
end
end
@parallel correct_V!(Vx,Vy,Pr,dt,ρ,dx,dy)
@parallel set_sphere!(C,Vx,Vy,a2,b2,ox,oy,sinβ,cosβ,lx,ly,dx,dy)
set_bc_Vel!(Vx, Vy, Vprof)
Vx_o .= Vx; Vy_o .= Vy; C_o .= C
@parallel advect!(Vx,Vx_o,Vy,Vy_o,C,C_o,dt,dx,dy)
if do_vis && it % nvis == 0
p1=heatmap(xc,yc,Array(Pr)';aspect_ratio=1,xlims=(-lx/2,lx/2),ylims=(-ly/2,ly/2),title="Pr")
p2=plot(iter_evo,err_evo;yscale=:log10)
p3=heatmap(xc,yc,Array(C)';aspect_ratio=1,xlims=(-lx/2,lx/2),ylims=(-ly/2,ly/2),title="C")
p4=heatmap(xc,yv,Array(Vy)';aspect_ratio=1,xlims=(-lx/2,lx/2),ylims=(-ly/2,ly/2),title="Vy")
display(plot(p1,p2,p3,p4))
end
if do_save && it % nsave == 0
matwrite("out_vis/step_$it.mat",Dict("Pr"=>Array(Pr),"Vx"=>Array(Vx),"Vy"=>Array(Vy),"C"=>Array(C),"dx"=>dx,"dy"=>dy))
end
end
return
end
macro ∇V() esc(:( @d_xa(Vx)/dx + @d_ya(Vy)/dy )) end
@parallel function update_τ!(τxx,τyy,τxy,Vx,Vy,μ,dx,dy)
@all(τxx) = 2μ*(@d_xa(Vx)/dx - @∇V()/3.0)
@all(τyy) = 2μ*(@d_ya(Vy)/dy - @∇V()/3.0)
@all(τxy) = μ*(@d_yi(Vx)/dy + @d_xi(Vy)/dx)
return
end
@parallel function predict_V!(Vx,Vy,τxx,τyy,τxy,ρ,g,dt,dx,dy)
@inn(Vx) = @inn(Vx) + dt/ρ*(@d_xi(τxx)/dx + @d_ya(τxy)/dy )
@inn(Vy) = @inn(Vy) + dt/ρ*(@d_yi(τyy)/dy + @d_xa(τxy)/dx - ρ*g)
return
end
@parallel function update_∇V!(∇V,Vx,Vy,dx,dy)
@all(∇V) = @∇V()
return
end
@parallel function update_dPrdτ!(Pr,dPrdτ,∇V,ρ,dt,dτ,damp,dx,dy)
@all(dPrdτ) = @all(dPrdτ)*(1.0-damp) + dτ*(@d2_xi(Pr)/dx/dx + @d2_yi(Pr)/dy/dy - ρ/dt*@inn(∇V))
return
end
@parallel function update_Pr!(Pr,dPrdτ,dτ)
@inn(Pr) = @inn(Pr) + dτ*@all(dPrdτ)
return
end
@parallel function compute_res!(Rp,Pr,∇V,ρ,dt,dx,dy)
@all(Rp) = @d2_xi(Pr)/dx/dx + @d2_yi(Pr)/dy/dy - ρ/dt*@inn(∇V)
return
end
@parallel function correct_V!(Vx,Vy,Pr,dt,ρ,dx,dy)
@inn(Vx) = @inn(Vx) - dt/ρ*@d_xi(Pr)/dx
@inn(Vy) = @inn(Vy) - dt/ρ*@d_yi(Pr)/dy
return
end
@parallel_indices (iy) function bc_x!(A)
A[1 , iy] = A[2 , iy]
A[end, iy] = A[end-1, iy]
return
end
@parallel_indices (ix) function bc_y!(A)
A[ix, 1 ] = A[ix, 2 ]
A[ix, end] = A[ix, end-1]
return
end
@parallel_indices (ix) function bc_yV!(A, V)
A[ix, 1 ] = V[ix]
A[ix, end] = A[ix, end-1]
return
end
@parallel_indices (ix) function bc_yval!(A, val)
A[ix, 1 ] = A[ix, 2]
A[ix, end] = val
return
end
function set_bc_Vel!(Vx, Vy, Vprof)
@parallel bc_y!(Vx)
@parallel bc_x!(Vy)
@parallel bc_yV!(Vy, Vprof)
return
end
function set_bc_Pr!(Pr, val)
@parallel bc_x!(Pr)
@parallel bc_yval!(Pr, val)
return
end
@inline function backtrack!(A,A_o,vxc,vyc,dt,dx,dy,ix,iy)
δx,δy = dt*vxc/dx, dt*vyc/dy
ix1 = clamp(floor(Int,ix-δx),1,size(A,1))
iy1 = clamp(floor(Int,iy-δy),1,size(A,2))
ix2,iy2 = clamp(ix1+1,1,size(A,1)),clamp(iy1+1,1,size(A,2))
δx = (δx>0) - (δx%1); δy = (δy>0) - (δy%1)
fx1 = lerp(A_o[ix1,iy1],A_o[ix2,iy1],δx)
fx2 = lerp(A_o[ix1,iy2],A_o[ix2,iy2],δx)
A[ix,iy] = lerp(fx1,fx2,δy)
return
end
@inline lerp(a,b,t) = b*t + a*(1-t)
@parallel_indices (ix,iy) function advect!(Vx,Vx_o,Vy,Vy_o,C,C_o,dt,dx,dy)
if ix > 1 && ix < size(Vx,1) && iy <= size(Vx,2)
vxc = Vx_o[ix,iy]
vyc = 0.25*(Vy_o[ix-1,iy]+Vy_o[ix-1,iy+1]+Vy_o[ix,iy]+Vy_o[ix,iy+1])
backtrack!(Vx,Vx_o,vxc,vyc,dt,dx,dy,ix,iy)
end
if iy > 1 && iy < size(Vy,2) && ix <= size(Vy,1)
vxc = 0.25*(Vx_o[ix,iy-1]+Vx_o[ix+1,iy-1]+Vx_o[ix,iy]+Vx_o[ix+1,iy])
vyc = Vy_o[ix,iy]
backtrack!(Vy,Vy_o,vxc,vyc,dt,dx,dy,ix,iy)
end
if checkbounds(Bool,C,ix,iy)
vxc = 0.5*(Vx_o[ix,iy]+Vx_o[ix+1,iy])
vyc = 0.5*(Vy_o[ix,iy]+Vy_o[ix,iy+1])
backtrack!(C,C_o,vxc,vyc,dt,dx,dy,ix,iy)
end
return
end
@parallel_indices (ix,iy) function set_sphere!(C,Vx,Vy,a2,b2,ox,oy,sinβ,cosβ,lx,ly,dx,dy)
xv,yv = (ix-1)*dx - lx/2, (iy-1)*dy - ly/2
xc,yc = xv+dx/2, yv+dx/2
if checkbounds(Bool,C,ix,iy)
xr = (xc-ox)*cosβ - (yc-oy)*sinβ
yr = (xc-ox)*sinβ + (yc-oy)*cosβ
if xr*xr/a2 + yr*yr/b2 < 1.05
C[ix,iy] = 1.0
end
end
if checkbounds(Bool,Vx,ix,iy)
xr = (xv-ox)*cosβ - (yc-oy)*sinβ
yr = (xv-ox)*sinβ + (yc-oy)*cosβ
if xr*xr/a2 + yr*yr/b2 < 1.0
Vx[ix,iy] = 0.0
end
end
if checkbounds(Bool,Vy,ix,iy)
xr = (xc-ox)*cosβ - (yv-oy)*sinβ
yr = (xc-ox)*sinβ + (yv-oy)*cosβ
if xr*xr/a2 + yr*yr/b2 < 1.0
Vy[ix,iy] = 0.0
end
end
return
end
runme(; n=16, do_vis=false, do_save=true)