diff --git a/trees/hopf-0002.tree b/trees/hopf-0002.tree index 8768e4e..870b0be 100644 --- a/trees/hopf-0002.tree +++ b/trees/hopf-0002.tree @@ -5,16 +5,9 @@ \p{ Let #{V} be a linear space of finite dimension #{n}. Let lower case #{x_i} denote elements of #{V}, which we will call also letters. We define a bracket as an alternating multilinear scalar valued function ##{ -\begin{gathered} -{[, \ldots, .]: V \times \ldots \times V \rightarrow \mathbb{k}} \\ -{\left[x_1, \ldots, x_n\right]=\operatorname{sign}(p)\left[x_{p(1)}, \ldots, x_{p(n)}\right]} \\ -{\left[x_1, \ldots, \alpha x_r+\beta y_r, \ldots, x_n\right]=\alpha\left[x_1, \ldots, x_r, \ldots, x_n\right]+\beta\left[x_1, \ldots, y_r, \ldots, x_n\right]} -\end{gathered} -} -#{n}-factors -##{ \begin{aligned} -{\left[x_1, \ldots, x_n\right] } & =\operatorname{sign}(p)\left[x_{p(1)}, \ldots, x_{p(n)}\right] \\ +[, \ldots, .] & : V \times \ldots \times V \rightarrow \mathbb{k} \quad (n\text{-factors}) \\ +{\left[x_1, \ldots, x_n\right]} & =\operatorname{sign}(p)\left[x_{p(1)}, \ldots, x_{p(n)}\right] \\ {\left[x_1, \ldots, \alpha x_r+\beta y_r, \ldots, x_n\right] } & =\alpha\left[x_1, \ldots, x_r, \ldots, x_n\right]+\beta\left[x_1, \ldots, y_r, \ldots, x_n\right] \end{aligned} }}