Skip to content

Latest commit

 

History

History
307 lines (214 loc) · 8.81 KB

README.md

File metadata and controls

307 lines (214 loc) · 8.81 KB

ReMEmbR Nova Carter Demo

This directory contains the code and instructions to run ReMEmbR on a real Nova Carter robot using Isaac ROS.

Table of Contents

Instructions

Step 1 - Setup the Nova Carter

This assumes you have a joystick controller connected, which much be done before any containers are launch to ensure the device is mounted.

  1. Make workspace (we will use directory isaac_ros_ws relative to this example directory.)

    mkdir -p isaac_ros_ws/src
    export ISAAC_ROS_WS=$(pwd)/isaac_ros_ws
    cd ${ISAAC_ROS_WS}/src && \
    git clone -b release-3.1 https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_common.git isaac_ros_common
  2. Setup workspace (taken from here):

    cd ${ISAAC_ROS_WS}/src && \
      git clone --recursive https://github.com/NVIDIA-ISAAC-ROS/nova_carter.git
    cd ${ISAAC_ROS_WS}/src/isaac_ros_common/scripts
    echo -e "CONFIG_IMAGE_KEY=ros2_humble.nova_carter\nCONFIG_DOCKER_SEARCH_DIRS=(../../nova_carter/docker ../docker)" > .isaac_ros_common-config
    cd ${ISAAC_ROS_WS}/src/isaac_ros_common/scripts && \
      echo -e "-v /etc/nova/:/etc/nova/\n-v /opt/nvidia/nova/:/opt/nvidia/nova/" > .isaac_ros_dev-dockerargs
    cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \
      ./scripts/run_dev.sh
    cd /workspaces/isaac_ros-dev
    vcs import --recursive src < src/nova_carter/nova_carter.repos
  3. Build Teleop Dependencies (taken from here):

    sudo apt update
    rosdep update
    rosdep install -i -r --from-paths ${ISAAC_ROS_WS}/src/nova_carter/nova_carter_bringup/ --rosdistro humble -y
    colcon build --symlink-install --packages-up-to nova_carter_bringup  --packages-skip isaac_ros_ess_models_install isaac_ros_peoplesemseg_models_install
    source install/setup.bash
  4. Run teleop

    export ROS_DOMAIN_ID=1 
    
    ros2 launch nova_carter_bringup teleop.launch.py \
        enable_3d_lidar_localization:=False \
        enable_3d_lidar:=False \
        enabled_2d_lidars:=front_2d_lidar,back_2d_Lidar \
        enable_nvblox_costmap:=False \
        enabled_fisheye_cameras:=none \
        disable_nvblox:=True
    
  5. Exit the telop ctrl+C

Step 2 - Build an occupancy grid map

  1. If not already inside the Isaac ROS dev container, launch the Isaac ROS Dev container (built above)

    cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \
      ./scripts/run_dev.sh
    
    source /opt/ros/humble/setup.bash
    source install/setup.bash
  2. Launch the Isaac ROS lidar mapping (ensure you shut down the previous teleop example)

    export ROS_DOMAIN_ID=1
    
    ros2 launch nova_carter_bringup lidar_mapping.launch.py \
        disable_nvblox:=True \
        enable_nvblox_costmap:=False
  3. Open FoxGlove to visualize the map building process. (Details in Isaac Ros Documenation).

  4. Teleoperate the robot to build a map

  5. Save the map to a file

    mkdir -p ${ISAAC_ROS_WS}/maps
    ros2 run nav2_map_server map_saver_cli --fmt png -f ${ISAAC_ROS_WS}/${ISAAC_ROS_WS}/my_map.yaml
  6. The map should now be stored in the ./isaac_ros_ws/maps/my_map.yaml

Step 3 - Run the memory builder

Step 3.1 - Launch the navigation stack

  1. Launch the Isaac ROS Dev container (built above)

    cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \
      ./scripts/run_dev.sh
    
    source /opt/ros/humble/setup.bash
    source install/setup.bash
  2. Run the navigation using the map from above.

    export ROS_DOMAIN_ID=1
    
    ros2 launch nova_carter_bringup navigation.launch.py \
    map_yaml_path:=/workspaces/isaac_ros-dev/maps/my_map.yaml \
    enable_3d_lidar_localization:=True \
    enable_3d_lidar:=True \
    enable_nvblox_costmap:=False \
    enabled_stereo_cameras:=none \
    enabled_fisheye_cameras:=none \
    disable_nvblox:=True
    

Step 3.1 - Launch the MilvusDB server

  1. TODO

Step 3.2 - Launch the memory builder

  1. Launch the demo container

    ./scripts/run_l4t_docker.sh
  2. Run the memory builder node

    python python/memory_builder_node.py

Now, simply teleoperate the robot to populate the memory database.

Step 4 - Run the navigation demo

Step 4.1 - Launch the navigation stack

  1. Launch the Isaac ROS Dev container (built above)

    cd ${ISAAC_ROS_WS}/src/isaac_ros_common && \
      ./scripts/run_dev.sh
    
    source /opt/ros/humble/setup.bash
    source install/setup.bash
  2. Run the navigation using the map from above.

    export ROS_DOMAIN_ID=1
    
    ros2 launch nova_carter_bringup navigation.launch.py \
    map_yaml_path:=/workspaces/isaac_ros-dev/maps/my_map.yaml \
    enable_3d_lidar_localization:=True \
    enable_3d_lidar:=True \
    enable_nvblox_costmap:=False \
    enabled_stereo_cameras:=none \
    enabled_fisheye_cameras:=none \
    disable_nvblox:=True
    

Step 4.2 - Launch the ReMEmbR Agent node and test

  1. Launch the demo container

    ./scripts/run_l4t_docker.sh
  2. Launch the ReMEmbR Agent node

    python python/agent_node.py
  3. Send a test query

    ros2 topic pub /speech std_msgs/String "data: Hey robot, can you take me to get some snacks?"

Step 5 - Integrate speech recognition

  1. Connect a microphone to the Nova Carter via USB

This is tested with a Respeaker microphone connected. You may need to modify the device index to your microphone.

  1. Make directory to cache speech recognition enginers

    mkdir -p data/asr
  2. Attach to the demo container

    docker exec -it nova_carter_demo bash
  3. Run the speech recongition Node.

    python3 python/asr_node.py

Now, you should be able to talk to the robot and see speech!

Assuming the agent node is still running, these queries are forwarded to the robot.

Note, queries are filtered for the keyword "robot".

Reference

Below are details about the ROS nodes used in the demo. You can check the python folder for additional details.

Agent Node

Name Description Default
llm_type The LLM model to use for the ReMEmbR agent. "command-r"
db_collection The MilvusDB collection to use for the memory "test_collection"
db_ip The MilvusDB IP address. "127.0.0.1"
query_topic The topic to listen to queries from. "/speech"
pose_topic The topic to listen to current robot poses from. "/amcl_pose"
goal_pose_topic The topic to publish goal poses to. "/goal_pose"

Captioner Node

Name Description Default
model The VILA model to use for captioning. "Efficient-Large-Model/VILA1.5-3B"
segment_duration The time window (in seconds) to caption. 3
image_topic The topic to subscribe to for images to caption. "/front_stereo_camera/left/image_raw"
caption_topic The topic to publish captions to. "/caption"

Memory Builder Node

Name Description Default
db_collection The collection name in MilvusDB to add entries. "test_collection"
db_ip The MilvusDB IP address. "127.0.0.1"
pose_topic The topic to subscribe to get pose information. "/amcl_pose"
caption_topic The topic to subscribe to get captions. "/caption"

ASR Node

Name Description Default
model The Whisper model to use. "small.en"
backend The Whisper backend to use. "whisper_trt"
cache_dir Directory to cache the built models. None
vad_window Number of audio chunks to use in max-filter window for voice activity detection. 5
mic_device_index The microphone device index. None
mic_sample_rate The microphone sample rate. 16000
mic_channels The microphone number of channels. 6
mic_bitwidth The microphone bitwidth. 2
speech_topic The topic to publish speech segments to. "/speech"