-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
44 lines (36 loc) · 2.38 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from ConvNetClass import BasicConvNet
import tensorflow as tf
from TF_Helper import inputs
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('n_classes', 2, 'Number of classes in the data.')
flags.DEFINE_integer('batch_size', 30, 'Mini-Batch Size.')
flags.DEFINE_float('dropout', 0.5, 'Keep probability for training dropout.')
flags.DEFINE_string('train_file', 'garage_door160_TRAIN.tfrecords', 'Name of the TFRecords file used for training.')
flags.DEFINE_string('test_file', 'garage_door160_TEST.tfrecords', 'Name of the TFRecords file used for testing.')
flags.DEFINE_string('train_dir','/media/mcamp/Local SSHD/Python Projects/GarageDoor2',
'Path to the directory housing training data and other project files.')
flags.DEFINE_integer('n_epochs', 50000000, 'The number of epochs the model is to run.')
training_data = dict()
training_data['X_train_batch'], training_data['y_train_batch'] = inputs(FLAGS.train_dir,
FLAGS.train_file,
FLAGS.batch_size,
FLAGS.n_epochs,
FLAGS.n_classes,
one_hot_labels=True,
imshape=76800)
training_data['X_test_batch'], training_data['y_test_batch'] = inputs(FLAGS.train_dir,
FLAGS.test_file,
FLAGS.batch_size,
FLAGS.n_epochs,
FLAGS.n_classes,
one_hot_labels=True,
imshape=76800)
network_architecture = dict(W_conv1=[5, 5, 3, 25],
W_conv2=[5, 5, 25, 50],
W_fc1=[40 * 40 * 50, 1024],
W_fc2=[1024, 2])
model = BasicConvNet(76800, 2, network_architecture, batch_size=30,
imshape=(160,160,3), dropout=0.5, model_dir='./modeltest/')
model.train(training_data, epochs=FLAGS.n_epochs)
#