-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_autoenc.py
192 lines (138 loc) · 5.97 KB
/
train_autoenc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import pickle
from itertools import chain
import numpy as np
import pandas as pd
import tensorflow as tf
from tqdm.keras import TqdmCallback
from train_ganomaly import (Decoder, Encoder, autoencoder_accuracy,
autoencoder_false_neg_rate, execution_checks,
list_to_text, load_data, load_data_file,
make_partition_list,
reverse_autoencoder_false_neg_rate, save_data_file,
text_to_dataset, verify_partition)
##############
# Parameters #
##############
# Data files
profiles_file = 'data/paper_data/train/active_meds_list.pkl'
depa_file = 'data/paper_data/train/depa_list.pkl'
# Save dir
save_dir = 'model'
# Years to use
train_years_begin = [2005,2006,2007] # inclusively
train_years_end = [2014,2015,2016]# inclusively
val_years_begin = [2015,2016,2017] # inclusively
val_years_end = [2015,2016,2017] # inclusively
# Model parameters
autoenc_max_size = 256
autoenc_squeeze_size = 64
dropout = 0.1
activation_type = 'selu'
initializer = 'lecun_normal'
# Training parameters
batch_size = 256
max_training_epochs = 1000
single_run_epochs = 21
early_stopping_patience = 5
early_stopping_loss_delta = 0.0001
# Easy names for layers
Input = tf.keras.layers.Input
Model = tf.keras.models.Model
Adam = tf.keras.optimizers.Adam
TextVectorization = tf.keras.layers.experimental.preprocessing.TextVectorization
###########
# Classes #
###########
class AutoEnocder(tf.keras.models.Model):
def __init__(self, vectorization_layer, autoencoder, name, **kwargs):
super(AutoEnocder, self).__init__(name=name, **kwargs)
self.vectorization_layer = vectorization_layer
self.autoencoder = autoencoder
def train_step(self, batch):
x = self.vectorization_layer(tf.expand_dims(batch,1))
with tf.GradientTape() as tape:
x_hat = self.autoencoder(x, training=True)
loss = self.autoencoder.compiled_loss(x, x_hat, regularization_losses=self.autoencoder.losses)
trainable_vars = self.autoencoder.trainable_variables
grads = tape.gradient(loss, trainable_vars)
self.autoencoder.optimizer.apply_gradients(zip(grads, trainable_vars))
self.autoencoder.compiled_metrics.update_state(x, x_hat)
return_dict = {m.name: m.result() for m in self.autoencoder.metrics}
return return_dict
def test_step(self, batch):
x = self.vectorization_layer(tf.expand_dims(batch,1))
x_hat = self.autoencoder(x, training=False)
self.autoencoder.compiled_loss(x, x_hat)
self.autoencoder.compiled_metrics.update_state(x, x_hat)
return_dict = {m.name: m.result() for m in self.autoencoder.metrics}
return return_dict
# Custom callback to log the fold
class FoldLogger(tf.keras.callbacks.Callback):
def __init__(self, fold, *args, **kwargs):
super(FoldLogger, self).__init__(*args, **kwargs)
self.fold=fold
def on_epoch_end(self, epoch, logs):
logs['fold'] = self.fold
###########
# Execute #
###########
if __name__ == '__main__':
# Check that the provided years are okay and define execution mode
validate, n_cross_val_folds, train_years_begin, train_years_end, val_years_begin, val_years_end = execution_checks(save_dir, train_years_begin, train_years_end, val_years_begin, val_years_end)
# Load data
profiles, depa = load_data(profiles_file, depa_file)
# Train
for fold in range(n_cross_val_folds):
if n_cross_val_folds > 1:
print('CROSS-VALIDATION FOLD {}\n\n'.format(fold + 1))
# Divide into train and val
train_year_begin = next(train_years_begin)
train_year_end = next(train_years_end)
if validate:
val_year_begin = next(val_years_begin)
val_year_end = next(val_years_end)
profiles_train = make_partition_list(profiles, train_year_begin, train_year_end)
depa_train = make_partition_list(depa, train_year_begin, train_year_end)
verify_partition(profiles_train, depa_train, 'train')
if validate:
profiles_val = make_partition_list(profiles, val_year_begin, val_year_end)
depa_val = make_partition_list(depa, val_year_begin, val_year_end)
verify_partition(profiles_val, depa_val, 'val')
# Convert the lists to Tensorflow Datasets, shuffle and batch
train_ds = text_to_dataset(list_to_text(profiles_train), shuffle=True).batch(batch_size).prefetch(25)
if validate:
val_ds = text_to_dataset(list_to_text(profiles_val)).batch(batch_size).prefetch(25)
else:
val_ds = None
# Instantiate the model and prepare the variables
vectorization_layer = TextVectorization(output_mode='binary')
vectorization_layer.adapt(train_ds)
x = Input(shape=(len(vectorization_layer.get_vocabulary()),))
z = Encoder(autoenc_max_size, autoenc_squeeze_size, dropout, activation_type, initializer, name='enc')(x)
x_hat = Decoder(len(vectorization_layer.get_vocabulary()), autoenc_max_size, dropout, activation_type, initializer, name='dec')(z)
autoencoder = Model(x, x_hat)
autoencoder.compile(optimizer='Adam', loss='binary_crossentropy', metrics=[autoencoder_accuracy, autoencoder_false_neg_rate])
autoencoder.summary()
aa = AutoEnocder(vectorization_layer, autoencoder, name='AutoEncoder')
aa.compile()
if validate:
epoch_range = max_training_epochs
else:
epoch_range = single_run_epochs
callbacks = []
if validate:
callbacks.append(tf.keras.callbacks.EarlyStopping(
monitor="val_loss",
min_delta=early_stopping_loss_delta,
patience=early_stopping_patience,
verbose=2, restore_best_weights=True
))
callbacks.append(FoldLogger(fold))
callbacks.append(tf.keras.callbacks.TensorBoard(log_dir=os.path.join(save_dir,'tensorboard', str(fold))))
callbacks.append(tf.keras.callbacks.CSVLogger(os.path.join(save_dir,'training.csv'), append=True))
callbacks.append(TqdmCallback(verbose=1, data_size=len(profiles_train), batch_size=batch_size))
aa.fit(train_ds, epochs=epoch_range, validation_data = val_ds, verbose=0, callbacks=callbacks)
if validate == False:
autoencoder.save(os.path.join(save_dir, 'trained_model.h5'))
save_data_file(os.path.join(save_dir, 'vocabulary.pkl'), vectorization_layer.get_vocabulary())