|
| 1 | +/*********************************************************************** |
| 2 | + * |
| 3 | + * Copyright (C) 2018 Bartosz Kostrzewa |
| 4 | + * |
| 5 | + * This file is part of tmLQCD. |
| 6 | + * |
| 7 | + * tmLQCD is free software: you can redistribute it and/or modify |
| 8 | + * it under the terms of the GNU General Public License as published by |
| 9 | + * the Free Software Foundation, either version 3 of the License, or |
| 10 | + * (at your option) any later version. |
| 11 | + * |
| 12 | + * tmLQCD is distributed in the hope that it will be useful, |
| 13 | + * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | + * GNU General Public License for more details. |
| 16 | + * |
| 17 | + * You should have received a copy of the GNU General Public License |
| 18 | + * along with tmLQCD. If not, see <http://www.gnu.org/licenses/>. |
| 19 | + * |
| 20 | + ************************************************************************/ |
| 21 | + |
| 22 | +#ifndef TENSORS_H |
| 23 | +#define TENSORS_H |
| 24 | + |
| 25 | +typedef struct epsilon4_t { |
| 26 | + int N; |
| 27 | + double eps_val[24]; |
| 28 | + int eps_idx[24][4]; |
| 29 | +} epsilon4_t; |
| 30 | + |
| 31 | +typedef struct epsilon3_t { |
| 32 | + int N; |
| 33 | + double eps_val[6]; |
| 34 | + int eps_idx[6][3]; |
| 35 | +} epsilon3_t; |
| 36 | + |
| 37 | +static inline epsilon3_t new_epsilon3(void) { |
| 38 | + epsilon3_t ret; |
| 39 | + |
| 40 | + ret.N = 6; |
| 41 | + |
| 42 | + int i = 0; |
| 43 | + int p = 0; |
| 44 | + for( int i1 = 1; i1 <= 3; i1++ ){ |
| 45 | + for( int i2 = 1; i2 <= 3; i2++ ){ |
| 46 | + for( int i3 = 1; i3 <= 3; i3++ ){ |
| 47 | + // for eps_123 we have: (1 - 2)(1 - 3)(2 - 3) = -2 |
| 48 | + // -> minus sign |
| 49 | + p = -(i1 - i2)*(i1 - i3)*(i2 - i3); |
| 50 | + if( p != 0 ){ |
| 51 | + ret.eps_val[i] = p > 0 ? 1 : -1; |
| 52 | + ret.eps_idx[i][0] = i1-1; |
| 53 | + ret.eps_idx[i][1] = i2-1; |
| 54 | + ret.eps_idx[i][2] = i3-1; |
| 55 | + i++; |
| 56 | + } |
| 57 | + } |
| 58 | + } |
| 59 | + } |
| 60 | + return(ret); |
| 61 | +} |
| 62 | + |
| 63 | +// note that this is the Euclidean eps_ijkl, for which we have eps_1234 = 1, |
| 64 | +// whereas in Minkowski space we have eps_0123 = -1 |
| 65 | +static inline epsilon4_t new_epsilon4(void) { |
| 66 | + epsilon4_t ret; |
| 67 | + |
| 68 | + ret.N = 24; |
| 69 | + |
| 70 | + int i = 0; |
| 71 | + int p = 0; |
| 72 | + for( int i1 = 1; i1 <= 4; i1++ ){ |
| 73 | + for( int i2 = 1; i2 <= 4; i2++ ){ |
| 74 | + for( int i3 = 1; i3 <= 4; i3++ ){ |
| 75 | + for( int i4 = 1; i4 <= 4; i4++ ){ |
| 76 | + // for eps_1234 we have: (1 - 2)(1 - 3)(1 - 4)(2 - 3)(2 - 4)(3 - 4) = 12 |
| 77 | + // -> NO minus sign |
| 78 | + p = (i1 - i2)*(i1 - i3)*(i1 - i4)*(i2 - i3)*(i2 - i4)*(i3 - i4); |
| 79 | + if( p != 0 ){ |
| 80 | + ret.eps_val[i] = p > 0 ? 1 : -1; |
| 81 | + ret.eps_idx[i][0] = i1-1; |
| 82 | + ret.eps_idx[i][1] = i2-1; |
| 83 | + ret.eps_idx[i][2] = i3-1; |
| 84 | + ret.eps_idx[i][3] = i4-1; |
| 85 | + i++; |
| 86 | + } |
| 87 | + } |
| 88 | + } |
| 89 | + } |
| 90 | + } |
| 91 | + return(ret); |
| 92 | +} |
| 93 | + |
| 94 | +#endif |
| 95 | + |
0 commit comments