forked from etmc/tmLQCD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsf_observables.c
230 lines (199 loc) · 15.3 KB
/
sf_observables.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*******************************************
*
* FILE: sf_observables.c
*
* Author: Jenifer Gonzalez Lopez
*
********************************************/
#ifdef HAVE_CONFIG_H
#include "tmlqcd_config.h"
#endif
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "sse.h"
#include "su3.h"
#include "su3adj.h"
#include "global.h"
#include "geometry_eo.h"
#include "sf_calc_action.h"
#include "sf_observables.h"
void sf_observables() {
double plaquette_energy;
double rectangle_energy;
double wilson_action;
double wilson_action_sepbound;
double iwasaki_action;
double factor;
/* sf b.c. abelian field and standard sf weight factors included (only plaquette here) */
plaquette_energy = measure_plaquette_sf_weights(g_Tbsf);
wilson_action = measure_wilson_action_sf(g_Tbsf, g_beta);
wilson_action_sepbound = measure_wilson_action_sf_separate_boundary(g_Tbsf, g_beta);
if(g_proc_id==0){
printf("\n"); fflush(stdout);
printf("SF b.c. abelian and standard sf weight factors included (only plaquette): \n"); fflush(stdout);
printf("The plaquette value is %e\n", plaquette_energy/(3.*6.*VOLUME*g_nproc)); fflush(stdout);
printf("The Wilson action value is %e\n", wilson_action); fflush(stdout);
printf("The Wilson action value sep bound is %e\n", wilson_action_sepbound); fflush(stdout);
}
/* sf b.c. abelian field and weight factors for O(a)-improvement included (only plaquette here) */
plaquette_energy = measure_plaquette_sf_weights_improvement(g_Tbsf, g_Cs, g_Ct) ;
wilson_action = measure_wilson_action_sf_weights_improvement(g_Tbsf, g_beta, g_Cs, g_Ct);
wilson_action_sepbound = measure_wilson_action_sf_weights_improvement_separate_boundary(g_Tbsf, g_beta, g_Cs, g_Ct);
if(g_proc_id==0){
printf("\n"); fflush(stdout);
printf("SF b.c. abelian and weight factors for O(a)-improvement included (only plaquette): \n"); fflush(stdout);
printf("The plaquette value is %e\n", plaquette_energy/(3.*6.*VOLUME*g_nproc)); fflush(stdout);
printf("The Wilson action value is %e\n", wilson_action); fflush(stdout);
printf("The Wilson action value sep bound is %e\n", wilson_action_sepbound); fflush(stdout);
}
/* sf b.c. abelian field and weight factors for O(a)-improvement included (plaquette and rectangle) */
plaquette_energy = measure_plaquette_sf_iwasaki(g_Tbsf, g_Cs, g_Ct, g_rgi_C0) ;
rectangle_energy = measure_rectangle_sf_iwasaki(g_Tbsf, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts);
iwasaki_action = measure_iwasaki_action_sf(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts);
if(g_proc_id==0){
printf("\n"); fflush(stdout);
printf("SF b.c. abelian and weight factors for O(a)-improvement included (Iwasaki = plaquette and rectangle): \n");
fflush(stdout);
printf("The plaquette value is %e\n", plaquette_energy/(3.*6.*VOLUME*g_nproc)); fflush(stdout);
printf("The rectangle value is %e\n", rectangle_energy/(2.*3.*6.*VOLUME*g_nproc)); fflush(stdout);
printf("The Iwasaki action value is %e\n", iwasaki_action); fflush(stdout);
}
/* COUPLING CALCULATION */
if(g_rgi_C1 > 0. || g_rgi_C1 < 0.) {
/* print the value of the leading order effective action \Gamma[V] and its derivative \Gamma'[V] (plaquette case) */
/* note that the derivative is precisely the constant factor in the definition of the coupling constant */
if(g_proc_id==0){
printf("\n"); fflush(stdout);
printf("Constant factor K: \n");
printf("K = %e\n", partial_lattice_lo_effective_iwasaki_action_sf_k(g_Tbsf, g_beta, g_rgi_C0, g_rgi_C1, g_eta)); fflush(stdout);
}
/* print the value of the "\partial(S)/\partial(eta)" which will have to be averaged later on to obtain the coupling constant */
if(g_proc_id==0){
printf("\n"); fflush(stdout);
printf("'Definition' of the coupling constant, partial(S)/partial(eta)\n"); fflush(stdout);
printf("S'[V,U] = %e\n", partial_iwasaki_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0,
g_rgi_C1, g_C1ss, g_C1tss, g_C1tts)); fflush(stdout);
printf("S'[V,U]/K = %e\n",partial_iwasaki_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0,
g_rgi_C1, g_C1ss, g_C1tss, g_C1tts)/partial_lattice_lo_effective_iwasaki_action_sf_k(g_Tbsf, g_beta, g_rgi_C0, g_rgi_C1, g_eta)); fflush(stdout);
printf("\n"); fflush(stdout);
}
}
else {
factor = 1./(1. - (1. - g_Ct)*(2./((double)g_Tbsf)));
/* print the value of the leading order effective action \Gamma[V] and its derivative \Gamma'[V] (plaquette case) */
/* note that the derivative is precisely the constant factor in the definition of the coupling constant */
if(g_proc_id==0){
printf("\n"); fflush(stdout);
printf("Effective action and its derivative with respect to eta, at leading order: \n");
printf("Gamma[V] = %e\n", lattice_lo_effective_plaquette_action_sf(g_Tbsf, g_beta, g_Ct, g_eta)); fflush(stdout);
printf("Gamma'[V] = %e\n", partial_lattice_lo_effective_plaquette_action_sf(g_Tbsf, g_beta, g_Ct, g_eta)); fflush(stdout);
printf("factor*Gamma'[V] = %e\n", factor*partial_lattice_lo_effective_plaquette_action_sf(g_Tbsf, g_beta, g_Ct, g_eta)); fflush(stdout);
printf("K_plaquette = %e\n", partial_lattice_lo_effective_plaquette_action_sf_k(g_Tbsf, g_beta, g_Ct, g_eta)); fflush(stdout);
}
/* print the value of the "\partial(S)/\partial(eta)" which will have to be averaged later on to obtain the coupling constant */
if(g_proc_id==0){
printf("\n"); fflush(stdout);
printf("'Definition' of the coupling constant, partial(S)/partial(eta)\n"); fflush(stdout);
printf("S'[V,U] = %e\n",partial_wilson_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct)); fflush(stdout);
printf("S'[V,U]/Gamma'[V] = %e\n",partial_wilson_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct)/partial_lattice_lo_effective_plaquette_action_sf(g_Tbsf, g_beta, g_Ct, g_eta)); fflush(stdout);
printf("S'[V,U]/(factor*Gamma'[V]) = %e\n",partial_wilson_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct)/(factor*partial_lattice_lo_effective_plaquette_action_sf(g_Tbsf, g_beta, g_Ct, g_eta))); fflush(stdout);
printf("S'[V,U]/K_plaquette = %e\n",partial_wilson_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct)/partial_lattice_lo_effective_plaquette_action_sf_k(g_Tbsf, g_beta, g_Ct, g_eta)); fflush(stdout);
printf("\n"); fflush(stdout);
}
}
/*****************************************************************************************************************************/
/*****************************************************************************************************************************/
/*****************************************************************************************************************************/
#if 0
/* (1): identifying the gauge fields "g_gauge_fields = V" and then calculating the plaquette as usually */
induced_lattice_background(g_gauge_field, g_Tbsf, g_eta);
wilson_action = measure_wilson_action_sf_weights_improvement(g_Tbsf, g_beta, g_Cs, g_Ct);
wilson_action_sepbound = measure_wilson_action_sf_weights_improvement_separate_boundary(g_Tbsf, g_beta, g_Cs, g_Ct);
iwasaki_action = measure_iwasaki_action_sf(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts);
partial_iwasaki_action = partial_iwasaki_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts);
printf(" Assigning U=V with the functions defined for that and then calculating S[V] from the same functions to calculate the actions as in previous cases \n"); fflush(stdout);
printf("\n"); fflush(stdout);
printf("S_sf_wilson_sepbound[U,W',W] = %e \n", wilson_action_sepbound); fflush(stdout);
printf("S_sf_wilson_notsepbd[U,W',W] = %e \n", wilson_action ); fflush(stdout);
printf("S_sf_iwasaki_notsepb[U,W',W] = %e \n", iwasaki_action); fflush(stdout);
printf("G[V] = %e \n", (6./g_beta)*iwasaki_action); fflush(stdout);
printf("S'[V] = %e \n", partial_iwasaki_action); fflush(stdout);
printf("G'[V] = %e \n", (6./g_beta)*partial_iwasaki_action);fflush(stdout);
printf("\n"); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_bulk = %e \n", measure_plaquette_sf_weights_improved_bulk(g_Tbsf)); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_boundary_0(cs,ct) = %e \n", measure_plaquette_sf_weights_improved_boundary_0(g_Cs, g_Ct)); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_boundary_t(cs) = %e \n", measure_plaquette_sf_weights_improved_boundary_t(g_Tbsf, g_Cs)); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_boundary_t_minus_1(ct) = %e \n", measure_plaquette_sf_weights_improved_boundary_t_minus_1(g_Tbsf, g_Ct)); fflush(stdout);
printf("\n"); fflush(stdout);
/* obtain normalization factor by calculation Wilson action for U=1 in all the lattice
and substract it to the previous result for the action.
Therefore, it should agree with the result obtained from the analytical expression implemented below */
set_all_links_to_one_with_dirichlet(g_Tbsf);
iwasaki_action -= measure_iwasaki_action_sf(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts);
partial_iwasaki_action -= partial_iwasaki_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts);
printf("\n"); fflush(stdout);
printf(" Previous case but substracting the normalization factor to the action: \n"); fflush(stdout);
printf("\n"); fflush(stdout);
printf("Norm - S_sf_iwasaki_notsepb[U,W',W] = %e \n", iwasaki_action); fflush(stdout);
printf("Norm - G[V] = %e \n", (6./g_beta)*iwasaki_action); fflush(stdout);
printf("Norm' - S'[V] = %e \n", partial_iwasaki_action); fflush(stdout);
printf("Norm' - G'[V] = %e \n", (6./g_beta)*partial_iwasaki_action);fflush(stdout);
printf("\n"); fflush(stdout);
/* (2): directly from the analytical expression which has been implemente in: */
printf("\n"); fflush(stdout);
printf(" Assigning U=V: but directly using the analytical expression of the action S[V] \n"); fflush(stdout);
printf("\n"); fflush(stdout);
printf("S[V]_analy = %e \n", lattice_background_plaquette_action_sf(g_Tbsf, g_beta, g_Ct, g_eta)); fflush(stdout);
printf("G[V]_analy = %e \n", lattice_lo_effective_plaquette_action_sf(g_Tbsf, g_beta, g_Ct, g_eta)); fflush(stdout);
printf("S'[V]_analy = %e \n", partial_lattice_background_plaquette_action_sf(g_Tbsf, g_beta, g_Ct, g_eta)); fflush(stdout);
printf("G'[V]_analy = %e \n", partial_lattice_lo_effective_plaquette_action_sf(g_Tbsf, g_beta, g_Ct, g_eta)); fflush(stdout);
printf("\n"); fflush(stdout);
/* obtain normalization factor by calculation Wilson action for U=1 in all the lattice */
set_all_links_to_one_with_dirichlet(g_Tbsf);
printf("\n"); fflush(stdout);
printf(" Setting U=Id and Dirichlet at x0= 0, t \n"); fflush(stdout);
printf("\n"); fflush(stdout);
/* The next three prints give me the same result, from 3 different functions.
The first two functions were cross-checked with Dru ==> they should be right.
Hoever, the result here obtained still differs to what we obtain by doing the
differenct between our result (for U=V) and the analytical expression */
printf("S_sf_wilson_sepbound[U,W',W] = %e \n", measure_wilson_action_sf_weights_improvement_separate_boundary(g_Tbsf, g_beta, g_Cs, g_Ct)); fflush(stdout);
printf("S_sf_wilson_notsepbd[U,W',W] = %e \n", measure_wilson_action_sf_weights_improvement(g_Tbsf, g_beta, g_Cs, g_Ct) ); fflush(stdout);
printf("S_sf_iwasaki_notsepb[U,W',W] = %e \n", measure_iwasaki_action_sf(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts)); fflush(stdout);
printf("G[U,W',W] = %e \n", (6./g_beta)*measure_iwasaki_action_sf(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts)); fflush(stdout);
printf("S'[U,W',W] = %e \n", partial_iwasaki_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts)); fflush(stdout);
printf("G'[U,W',W] = %e \n", (6./g_beta)*partial_iwasaki_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts));fflush(stdout);
printf("\n"); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_bulk = %e \n", measure_plaquette_sf_weights_improved_bulk(g_Tbsf)); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_boundary_0(cs,ct) = %e \n", measure_plaquette_sf_weights_improved_boundary_0(g_Cs, g_Ct)); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_boundary_t(cs) = %e \n", measure_plaquette_sf_weights_improved_boundary_t(g_Tbsf, g_Cs)); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_boundary_t_minus_1(ct) = %e \n", measure_plaquette_sf_weights_improved_boundary_t_minus_1(g_Tbsf, g_Ct)); fflush(stdout);
printf("\n"); fflush(stdout);
/* obtain normalization factor by calculation Wilson action for U=1 in all the lattice */
set_all_links_to_one();
printf("\n"); fflush(stdout);
printf(" Setting U=Id \n"); fflush(stdout);
printf("\n"); fflush(stdout);
/* For the first case below, pbc, I've gotten the number I expected: "(Nc*12*L^4)/g02".
Thus, since the function "measure_iwasaki_action(g_beta, g_rgi_C0, g_rgi_C1))" was crosschecked bf with Dru it should be right.
It somehow tells me that also the function which assigns the gauge fields to one "set_all_links_to_one()" should be right.*/
printf("S_pbc[U,W',W] = %e \n", measure_iwasaki_action(g_beta, g_rgi_C0, g_rgi_C1)); fflush(stdout);
/* The next three prints give me the same result, from 3 different functions.
The first two functions were cross-checked with Dru ==> they should be right.
Hoever, the result here obtained still differs to what we obtain by doing the
differenct between our result (for U=V) and the analytical expression */
printf("S_sf_wilson_sepbound[U,W',W] = %e \n", measure_wilson_action_sf_weights_improvement_separate_boundary(g_Tbsf, g_beta, g_Cs, g_Ct)); fflush(stdout);
printf("S_sf_wilson_notsepbd[U,W',W] = %e \n", measure_wilson_action_sf_weights_improvement(g_Tbsf, g_beta, g_Cs, g_Ct) ); fflush(stdout);
printf("S_sf_iwasaki_notsepb[U,W',W] = %e \n", measure_iwasaki_action_sf(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts)); fflush(stdout);
printf("G[U,W',W] = %e \n", (6./g_beta)*measure_iwasaki_action_sf(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts)); fflush(stdout);
printf("S'[U,W',W] = %e \n", partial_iwasaki_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts)); fflush(stdout);
printf("G'[U,W',W] = %e \n", (6./g_beta)*partial_iwasaki_action_sf_respect_to_eta(g_Tbsf, g_beta, g_Cs, g_Ct, g_rgi_C0, g_rgi_C1, g_C1ss, g_C1tss, g_C1tts));fflush(stdout);
printf("\n"); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_bulk = %e \n", measure_plaquette_sf_weights_improved_bulk(g_Tbsf)); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_boundary_0(cs,ct) = %e \n", measure_plaquette_sf_weights_improved_boundary_0(g_Cs, g_Ct)); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_boundary_t(cs) = %e \n", measure_plaquette_sf_weights_improved_boundary_t(g_Tbsf, g_Cs)); fflush(stdout);
printf("measure_plaquette_sf_weights_improved_boundary_t_minus_1(ct) = %e \n", measure_plaquette_sf_weights_improved_boundary_t_minus_1(g_Tbsf, g_Ct)); fflush(stdout);
printf("\n"); fflush(stdout);
#endif
}