-
Notifications
You must be signed in to change notification settings - Fork 0
/
status_tests.py
72 lines (60 loc) · 2.56 KB
/
status_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#################################################################################
## status_tests.py - Helper functions for the Penn CIS Teaching Dashboard
##
## Helper functions that allow us to color-highlight records
##
## Licensed to the Apache Software Foundation (ASF) under one
## or more contributor license agreements. See the NOTICE file
## distributed with this work for additional information
## regarding copyright ownership. The ASF licenses this file
## to you under the Apache License, Version 2.0 (the
## "License"); you may not use this file except in compliance
## with the License. You may obtain a copy of the License at
##
## http://www.apache.org/licenses/LICENSE-2.0
##
## Unless required by applicable law or agreed to in writing,
## software distributed under the License is distributed on an
## "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
## KIND, either express or implied. See the License for the
## specific language governing permissions and limitations
## under the License.
##
#################################################################################
from datetime import datetime, timezone, timedelta
import pandas as pd
####
## Reference time, in our time zone
now = datetime.now(timezone.utc)
date_format = '%Y-%m-%d %H:%M:%S'
timezone = datetime.now().astimezone().tzinfo
due_date = 'due'# ({})'.format(timezone)
## Grace period
grace = timedelta(days=5)
def is_unsubmitted(x):
return x['Status'] == 'Missing' or x['Total Score'] is None or x['Total Score'] < x['Max Points'] / 2.0
def is_overdue(x, due):
if not pd.isnull(x[due_date]):
due = x[due_date]
return is_unsubmitted(x) and due < now + grace
def is_near_due(x, due):
if not pd.isnull(x[due_date]):
due = x[due_date]
return is_unsubmitted(x) and (due - now) < timedelta(days = 2) and not is_overdue(x, due)# now < due + timedelta(days=5)
def is_submitted(x: pd.Series):
return x['Status'] != 'Missing'
def is_below_mean(x: pd.Series, mean: float, total = None):
if total is None:
total = 'Total Score'
return x[total] < mean*0.9
def is_far_below_mean(x: pd.Series, mean: float, total = None):
if total is None:
total = 'Total Score'
# print (x[total], mean)
return x[total] < mean / 2
def is_far_above_mean(x: pd.Series, max, mean: float, total = None):
if total is None:
total = 'Total Score'
return x[total] >= max * 0.95
def row_test(row: pd.Series, due: datetime, mean: float, median: int, min: int, max: int, stdev: float, row_test_fn: callable) -> str:
return row_test_fn(row)