-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathazurecognitive_search.py
45 lines (34 loc) · 1.55 KB
/
azurecognitive_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
#responsible for creating embeddings in vector store
from langchain_openai import AzureOpenAIEmbeddings
import openai
from langchain.vectorstores.azuresearch import AzureSearch
from langchain_community.document_loaders import AzureBlobStorageContainerLoader
#container we will use to store our container data
from langchain.text_splitter import CharacterTextSplitter
#create chunks from txt file
from dotenv import load_dotenv
load_dotenv()
os.environ["AZURE_OPENAI_API_KEY"] = os.getenv("AZURE_OPENAI_API_KEY")
os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv("AZURE_OPENAI_ENDPOINT")
vector_store_address: str = f"https://{os.environ.get('AZURE_COGNITIVE_SEARCH_SERVICE_NAME')}.search.windows.net"
embeddings = AzureOpenAIEmbeddings(
azure_deployment="embeddingmodel", # Replace with your actual deployment name
openai_api_version="2023-05-15", # Specify the API version you are using
)
index_name: str = "langchain-vector-stonybrook"
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=os.environ.get("AZURE_COGNITIVE_SEARCH_API_KEY"),
index_name=index_name,
embedding_function=embeddings.embed_query,
)
loader = AzureBlobStorageContainerLoader(
conn_str=os.environ.get("AZURE_CONN_STRING"),
container=os.environ.get("CONTAINER_NAME"),
)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=150, chunk_overlap=20)
docs = text_splitter.split_documents(documents)
vector_store.add_documents(documents=docs)
print("Data loaded into vectorstore successfully")