diff --git a/CHANGELOG.md b/CHANGELOG.md index 5817013c90..bc388d8491 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -10,6 +10,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For users of the library: **Improved** +- Improvements to `ARIMA` documentation: Specified possible `p`, `d`, `P`, `D`, `trend` advanced options that are available in statsmodels. More explanations on the behaviour of the parameters were added. [#2142](https://github.com/unit8co/darts/pull/2142) by [MarcBresson](https://github.com/MarcBresson) - Improvements to `TimeSeries`: [#2196](https://github.com/unit8co/darts/pull/2196) by [Dennis Bader](https://github.com/dennisbader). - 🚀🚀🚀 Significant performance boosts for several `TimeSeries` methods resulting increased efficiency across the entire `Darts` library. Up to 2x faster creation times for series indexed with "regular" frequencies (e.g. Daily, hourly, ...), and >100x for series indexed with "special" frequencies (e.g. "W-MON", ...). Affects: - All `TimeSeries` creation methods diff --git a/darts/models/forecasting/arima.py b/darts/models/forecasting/arima.py index 4891b33719..f057b556ef 100644 --- a/darts/models/forecasting/arima.py +++ b/darts/models/forecasting/arima.py @@ -10,7 +10,12 @@ .. [1] https://wikipedia.org/wiki/Autoregressive_integrated_moving_average """ -from typing import Optional, Tuple +from typing import List, Literal, Optional, Sequence, Tuple, Union + +try: + from typing import TypeAlias +except ImportError: + from typing_extensions import TypeAlias import numpy as np from statsmodels import __version_tuple__ as statsmodels_version @@ -28,14 +33,22 @@ statsmodels_above_0135 = statsmodels_version > (0, 13, 5) +IntOrIntSequence: TypeAlias = Union[int, Sequence[int]] + + class ARIMA(TransferableFutureCovariatesLocalForecastingModel): def __init__( self, - p: int = 12, + p: IntOrIntSequence = 12, d: int = 1, - q: int = 0, - seasonal_order: Tuple[int, int, int, int] = (0, 0, 0, 0), - trend: Optional[str] = None, + q: IntOrIntSequence = 0, + seasonal_order: Tuple[int, IntOrIntSequence, IntOrIntSequence, int] = ( + 0, + 0, + 0, + 0, + ), + trend: Optional[Union[Literal["n", "c", "t", "ct"], List[int]]] = None, random_state: Optional[int] = None, add_encoders: Optional[dict] = None, ): @@ -45,20 +58,29 @@ def __init__( Parameters ---------- - p : int + p : int | Sequence[int] Order (number of time lags) of the autoregressive model (AR). + If a sequence of integers, specifies the exact lags to include. d : int The order of differentiation; i.e., the number of times the data have had past values subtracted (I). - q : int + q : int | Sequence[int] The size of the moving average window (MA). - seasonal_order: Tuple[int, int, int, int] - The (P,D,Q,s) order of the seasonal component for the AR parameters, - differences, MA parameters and periodicity. - trend: str - Parameter controlling the deterministic trend. 'n' indicates no trend, - 'c' a constant term, 't' linear trend in time, and 'ct' includes both. - Default is 'c' for models without integration, and no trend for models with integration. + If a sequence of integers, specifies the exact lags to include in the window. + seasonal_order: Tuple[int | Sequence[int], int, int | Sequence[int], int] + The (P,D,Q,s) order of the seasonal component for the AR parameters (P), + differences (D), MA parameters (Q) and periodicity (s). D and s are always integers, + while P and Q may either be integers or sequence of positive integers + specifying exactly which lag orders are included. + trend: Literal['n', 'c', 't', 'ct'] | list[int], optional + Parameter controlling the deterministic trend. Either a string or list of integers. + If a string, can be 'n' for no trend, 'c' for a constant term, 't' for a linear trend in time, + and 'ct' for a constant term and linear trend. + If a list of integers, defines a polynomial according to `numpy.poly1d` [1]_. E.g., `[1,1,0,1]` would + translate to :math:`a + bt + ct^3`. + Trend term of lower order than `d + D` cannot be as they would be eliminated due to the differencing + operation. + Default is 'c' for models without integration, and 'n' for models with integration. add_encoders A large number of future covariates can be automatically generated with `add_encoders`. This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that @@ -103,6 +125,10 @@ def encode_year(idx): [481.07892911], [502.11286509], [555.50153984]]) + + References + ---------- + .. [1] https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html """ super().__init__(add_encoders=add_encoders) self.order = p, d, q diff --git a/darts/tests/models/forecasting/test_historical_forecasts.py b/darts/tests/models/forecasting/test_historical_forecasts.py index fe9042d170..4f2fd6eac5 100644 --- a/darts/tests/models/forecasting/test_historical_forecasts.py +++ b/darts/tests/models/forecasting/test_historical_forecasts.py @@ -357,8 +357,22 @@ def create_model(ocl, use_ll=True, model_type="regression"): **tfm_kwargs, ) - def test_historical_forecasts_transferrable_future_cov_local_models(self): - model = ARIMA() + @pytest.mark.parametrize( + "arima_args", + [ + {}, + { + "p": np.array([1, 2, 3, 4]), + "q": (2, 3), + "seasonal_order": ([1, 5], 1, (1, 2, 3), 6), + "trend": [0, 0, 2, 1], + }, + ], + ) + def test_historical_forecasts_transferrable_future_cov_local_models( + self, arima_args: dict + ): + model = ARIMA(**arima_args) assert model.min_train_series_length == 30 series = tg.sine_timeseries(length=31) res = model.historical_forecasts(