
Collaborative software visualization with SEE
William Behnke

Dept. of Mathematics and Computer Science
University of Bremen

wbehnke@uni-bremen.de

Hannes Lennart Kuß
Dept. of Mathematics and Computer Science

University of Bremen
hkuss@uni-bremen.de

Abstract—SEE is a software engineering tool for visual-
izing software metrics based on the code-cities metaphor.
It assists distributed teams in analyzing software collab-
oratively by offering multi-user functionality (including a
voice chat), that allows team members to communicate
naturally while investigating software. The tool utilizes
graphs supplied in the Graph eXchange Language (GXL)
format to represent software data, and allows users—among
other things—to compare the current architecture with the
original plan and to track changes of a software over time.
One of our long-term goals is to enhance communication and
collaboration among team members, to bridge spatial gaps,
and to facilitate the understanding of software in (spatially
separated) teams.

I. Introduction
On a typical day, software developers spend around 82
minutes in meetings [1]. One of our goals in SEE is
to reduce that time to the needed minimum. In software
development, it is relevant to visualize different aspects of
code in order to get a better understanding [2]. According
to Cherubini et. al.: “developers produced visualizations:
to understand, to design and to communicate.” [2] How-
ever, the visualization of code is not easy and developers
often miss this feature [2]. SEE (for Software Engineering
Experience) is a tool developed by our research group
to visualize software data in 3D using the code-city
metaphor. [3].

Our tool focuses on co-operative understanding, en-
abling multiple people to understand and to communicate
about software together. Our tool builds up on established
3D visualization platforms, specifically utilizing the Unity
Engine. We empower developers to incorporate interac-
tive capabilities, enabling multiple individuals to partake
in virtual meetings, and facilitate information exchange
within the context of software visualization.

SEE provides developers with enhanced abilities to
comprehend the quality of their software, get a compre-
hensive overview, navigate complex architectural struc-
tures, and monitor the runtime behavior of their software.
One of our goals is to support software development
teams through the provision of an intuitive and infor-
mative environment. The development of SEE is being
carried out at the University of Bremen in collaboration
with Axivion 1, a company specialized in static code
analysis and software architecture verification.

1https://www.axivion.com/

The focus of this paper is to introduce our project and,
in particular, to emphasize the significance of incorpo-
rating emotional states within our software. Emotional
state means the mood of the participating individual by
analyzing their expressions and gestures.

In addition, we aim to present the future plans for our
tool and provide further insight into the topic for other
developers.

II. SEE Capabilities
The SEE platform is equipped with multiplayer func-
tionality, which allows multiple users—represented as
humanoid avatars—to concurrently interact with both the
viewed software and each other. This includes actions
such as moving the avatar or altering the location or
size of components drawn within the code city, as well
as the use of a voice chat to facilitate communication
between users. This collaborative environment enables
users to work together and discuss the software system
being analyzed.

SEE represents a software system’s architecture hier-
archically (persisted as GXL graph), with each node in
the graph representing a module of source code. Binary
relations among components, such as function calls, are
depicted as hierarchically bundled edges.

The incorporation of software metrics into the graph
is achieved through the use of additional visual attributes
of the shapes—such as depth, height, width or color—
and additional decorations, e.g., antennas above blocks.
The layout of the Code city is customizable and can be
automated by different types of hierarchical graph lay-
outs (e.g., treemaps, EvoStreets, rectangular and circular
packing). An example of a Code city can be seen in
Figure 1. The SEE platform enables—among others—the
visualization of the current state of a software architec-
ture through the representation of components as nodes
and dependencies as edges connecting them. This rep-
resentation can be compared to the original architecture
plan, allowing users to identify discrepancies between
the intended specification and the implemented architec-
ture. This comparison facilitates a clear understanding of
deviations from the original design and allows for the
identification of potential issues or areas for improvement.

In addition to this, SEE offers an “evolution view”
feature which allows users to view the historical evolution
of a project, providing a comprehensive overview of
the changes that occurred over time and identifying the

https://www.axivion.com/


Fig. 1. Screenshot of an example Code City.

components that have undergone the most significant
alterations. SEE also includes a built-in code viewer with
the capability to synchronize the current line of code
being viewed among all participants in a virtual meeting,
enabling all attendees to easily reference the code being
discussed.

III. Enhancing Nonverbal Communication
The SEE platform originated as a student project, initially
utilizing the Unreal Engine as a base. After further
development, we transitioned to the Unity Engine, as it
offers greater versatility in terms of deployment across
various platforms, and the ability to utilize a wider range
of tools and community-driven products.

One of the most promising focus of development for
the SEE platform is the improvement of non-verbal com-
munication through capturing and displaying user emo-
tions and gestures. To achieve this, we are experimenting
with the use of the HTC Facial Tracker 2 and OpenCV 3

to monitor and mirror facial states. The incorporation of
facial tracking technology into code review processes has
several potential benefits. One of the key advantages is
the ability to analyze nonverbal cues such as expressions
and gestures, which can provide additional information
about the emotional state of the individuals involved in
the process.

In psychology it is well known, that nonverbal commu-
nication is as important as verbal communication. Hence,
the incorporation of nonverbal communication in SEE can
lead to more efficient and effective communication and
collaboration among team members, as they are able to
more easily interpret the reactions of their colleagues.
Additionally, this may also aid in identifying areas of
confusion or difficulty, allowing for more focused and
productive discussions.

Furthermore, this feature can be especially beneficial
for managers or supervisors who may not be profoundly
involved in the technical aspects of the software devel-
opment process. It allows them to more easily identify
and address issues related to team dynamics and com-
munication, improving the overall performance of the

2see https://www.vive.com/de/accessory/facial-tracker/
3see https://opencv.org/opencv-face-recognition/

development team. By offering a clearer insight into the
emotional state of the team, managers and supervisors can
effectively address and resolve any conflicts or challenges
that may arise during the development process, ultimately
improving time management. In most project contexts,
emotional states refer to the emotional well-being of
software developers.

Overall, incorporating facial tracking technology into
code review processes has potential to improve time
management and increase the efficiency and effectiveness
of software development teams. This can lead to more
productive and successful software development projects,
ultimately resulting in better software and more satisfied
customers.

IV. Upcoming Features
In this paper, we discussed some key aspects for the
continued development of SEE. Additionally, we also
identified other areas of interest for further exploration,
such as:

• Improving edge visualization using different types
of animations: Improving the visualization of edges
between different components of the software, by
improving animations to more clearly represent re-
lationships and dependencies.

• Runtime configuration: Providing more flexibility
and control for users by allowing them to configure
the visualization at runtime, tailoring it to their
specific needs and preferences.

• Live documentation: Incorporating live documenta-
tion within SEE, to provide a more complete and
integrated understanding of the software.

V. Conclusion
This paper presents SEE, a software visualization tool
that facilitates software comprehension by means of Code
Cities. We discussed the technology used in the devel-
opment of SEE to demonstrate our plans for future im-
plementations, and enhancing nonverbal communication
by capturing and displaying user emotions and gestures.
More information about SEE can be found on our web-
site: https://see.uni-bremen.de/.

References
[1] A. N. Meyer, E. T. Barr, C. Bird, and T. Zimmermann, “Today was a

good day: The daily life of software developers,” IEEE Transactions
on Software Engineering, vol. 47, no. 5, pp. 863–880, 2021.

[2] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s
go to the whiteboard: How and why software developers use
drawings,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’07. New York, NY,
USA: Association for Computing Machinery, 2007, p. 557–566.
[Online]. Available: https://doi.org/10.1145/1240624.1240714

[3] R. Wettel and M. Lanza, “Codecity: 3d visualization of large-scale
software,” in Companion of the 30th International Conference on
Software Engineering, ser. ICSE Companion ’08. New York, NY,
USA: Association for Computing Machinery, 2008, p. 921–922.
[Online]. Available: https://doi.org/10.1145/1370175.1370188

https://see.uni-bremen.de/
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1145/1370175.1370188

	Introduction
	SEE Capabilities
	Enhancing Nonverbal Communication
	Upcoming Features
	Conclusion
	References

