
A Controlled Experiment on the Usability of
Automated Reflexion Mapping Suggestions

Integrated in Code Cities
Leon Ehrhardt

University of Bremen, Germany
leeeon333@gmail.com

Rainer Koschke
University of Bremen, Germany

https://orcid.org/0000-0003-4094-3444

Abstract—Reflexion modeling allows developers to reconstruct
and verify their software architecture against its implementation.
One step of this method is the mapping of implementation
components onto architecture components. Researchers have
tried to automate the process of recommending suggestions where
to map implementation components. This paper describes how
such techniques can be integrated in an interactive approach that
is based on software visualization using the code-city metaphor
and evaluates the usability of this approach through a controlled
experiment.

During our user study, effects of reduced cognitive effort
and time savings were measured when automated suggestions
were available during reflexion modeling, although no statistical
significance of the observed differences could be established.

Index Terms—reflexion modeling, architecture recovery, semi-
automatic mapping, code city metaphor, usability.

I. INTRODUCTION

Gail Murphy’s seminal work on software reflexion models
focuses on bridging the gap between high-level architectural
models and the actual source code of software systems [1].
This approach helps software engineers compare their high-
level design intentions with the implemented code, identifying
discrepancies and areas of agreement. The process involves:

1) Architects create a high-level model representing their
understanding of the system’s architecture.

2) Architects map source code onto the high-level model
to specify which elements of the source code implement
which parts of the high-level model.

3) An automated analysis generates a reflexion model that
highlights where the high-level model and the source code
align and where they differ.

The first two steps can cause a lot of manuals work [2].
Because the high-level model is a concept in the mind of
architects, there is little to automate. Yet, many researchers
have attempted to semi-automate the mapping process [3]–
[9]. Mapping suggestions can be derived from, for instance,
naming conventions or a partial mapping. Current research for
evaluating those automated mapping suggestions has mostly
focused on comparing automated suggestions against an oracle
mapping. How the automated mappings can be integrated in

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – KO 2342/8-1.

an interactive process and whether they are actually useful is
less researched.

This paper complements this research by pondering on how
automated mapping suggestions can be integrated into the
code-city metaphor. A code city is a software visualization
that depicts software as a kind of city in 3D [10]. Specifically,
we integrate automated mapping suggestions in our collabo-
rative visualization platform SEE (for Software Engineering
Experience). We will report on a controlled experiment in
which we evaluate the effort, time saving, and usability of
this integration.

Section II will first summarize the relevant research on this
subject. After that we describe in Section III the reflexion-
modeling approach in SEE including the integration of au-
tomated mappings. The design of our controlled experiment
will be described in Section IV and its results discussed in
Section V. Section VI, finally, summarizes the conclusions.

II. RELATED WORK

There are different approaches to architecture conformance
checking. Because our approach is based on reflexion mod-
eling, we will focus on this approach and refer the reader to
existing overviews on alternative approaches [11], [12].

Murphy et al. introducted reflexion modeling in 1995 [1].
Although originally intended for reconstructing or verifying
architectures, other researchers have used it for various related
purposes. Buckley et al. used it for encapsulating user-targeted
components, as a prelude to component recovery, reuse, and
refactoring [13]. Ackermann et al. [14] adopted reflexion
modeling to support the compliance checking of behaviors of
systems of systems in terms of sequencing properties. We used
it to extract state machines from code [15]. We also extended
reflexion modeling in combination with clone detection to
consolidate software variants into product lines [16]. Another
use of reflexion modeling in the context of product lines was
reported by Tekinerdogan et al. [17]. Çilden et al. [18] used it
to check applications for OSGi compliance. Le Gear et al. [19]
proposed a technique called software reconnexion—based on
reflexion modeling—that uses a reuse perspective of software.
which contains core elements of the subject system. Based
on these, the user is prompted during the early iterations of
the reflexion-modeling process. Reconnexion aims at reducing



the technique’s dependency upon documentation and domain
knowledge. Herold et al. [20] have proposed a technique to
detect typical causes of violations in reflexion models.

There were also a few algorithmic additions to the original
reflexion analysis. The original method did not allow hierar-
chical architecture components. We provided a formalization
of an extension that can be applied to architecture models
with arbitrary many hierarchical levels [21]. Moreover, we
described an incremental analysis to compute the reflexion
model [22]. Our algorithm repeats the analysis only for those
parts that are actually influenced by a change, which is
particularly advantageous in interactive usage. SEE uses this
incremental algorithm to provide what-if information in real-
time while a user hovers a dragged source-code element on
an architecture component. The what-if information shows
how the reflexion model would change if a user mapped
a given source-code element onto a particular architecture
component. Bittencourt [23] has proposed three changes to
improve integration of the technique into software develop-
ment by (1) expressing architectural rules as design tests that
may be checked in a testing framework, (2) by supporting
semi-automated changes to the mapping between source code
and the model when code changes occur, and (3) by deriving
automated suggestions of high-level model changes based on
improving software cohesion and coupling.

Romanelli et al. [24] presented visual support for reflexion
modeling. The source-code elements are visualized as a 2D
tree map. These elements can be mapped to architecture com-
ponents using regular expressions as in the original approach
by Murphy. Yet, the hits of those regular expressions are
hightlighted in the tree map giving an overview on their
location and hierarchy. The architecture and the resulting
reflexion model are drawn as box-and-arrow diagrams as we
do. The difference to our approach is that we are using a
3D visualization and the same kind of visualization for both
the implementation and architecture in an integrated manner,
allowing users to intuitively drag source-code elements onto
architecture components. We express the mapping through
spatial enclosing. This gives users an immediate overview
what has already been mapped and where it has been mapped.

There are many papers on automating the process of rec-
ommending mappings for reflexion modeling [3]–[9]. These
papers are described in greater detail in the other paper we
submitted to this workshop [25]. Moreover, the approach used
to generate mapping suggestions is not truly relevant for the
way we integrated automated mappings into SEE. For these
reasons, we refer the reader to the other paper. We will go
into the details of only the approach used in our study.

SEE uses the HugMe method [3] as a general framework
for how to come up with mapping recommendations based on
a partial mapping. HugMe combines various clustering tech-
niques to group related source code artifacts. Then it selects
clusters based on a so called attract function that computes the
attraction between a source-code element to be mapped and
existing clusters. The candidate set of all mapping suggestions
is then formed by all clusters whose attraction is greater than

the mean attraction over all clusters plus its standard deviation.
HugMe itself does not dictate what attract function to use.
Because we found in our evaluation in another of ours [25]
that ADC-Attract has the best performance for PetClinic. ADC-
Attract calculates the attraction of a code entity to be mapped
for each architecture component based on its coupling—taking
into account required coupling according to the architecture
model—and the similarity of term frequencies (identifiers) in
the source code. We will use HugMe in combination with
ADC-Attract, but expect the findings of our study to hold
for other approaches to recommend mappings, too, as long
as these have similar performance.

There are many tools implementing reflexion modeling, for
instance, the commercial Axivion Suite1 and ConQAT2 or the
research tools iCIA [26], JITTAC [27], [28], or SAVE [11] (the
latter two tools allow real-time incremental changes for what-
if analyses). However, there are only a few tools—all of them
research tools—which offer automated mappings interactively.
For instance, a tool by Biehl and Löwe [29] generates mapping
suggestions in the context of model-driven software develop-
ment (MDSD) by deducing information from the implementa-
tion, design documents, and model transformations. Another
tool by Kim et al. [26]—again in the context of MDSD—
leverages the tracing information left in the generated code
sceletons to establish the mapping for all unchanged generated
code. The creation of mappings for manually changed code is
based on an improved Count Attract function. Both tools are
designed specifically for an MDSC context.

III. REFLEXION MODELING USING CODE CITIES

SEE (for (Software Engineering Experience) is a versatile
software-visualization platform that uses the ”software-as-a-
city” metaphor [10]. It enables users, such as software archi-
tects and developers, to collaborate from different locations,
when they need to discuss aspects of their software at a higher
level. The users of SEE interact in a shared virtual room,
each one represented by an avatar, allowing them to see and
communicate with each other via an integrated voice chat
and body gestures. The virtual rooms of SEE can be entered
from various hardware devices, including desktop computers,
tablets, and virtual reality systems (VR).

The programs the users of SEE want to discuss are visual-
ized as code cities in those virtual rooms residing on tables
where users can group around (cf. Fig. 1). Anslow et al. [30]
have explored this kind of setting for the physical world with
a large multi-touch 2D display laid on a table around which
participants in the same room can group. They offered different
kinds of software visualizations (yet no code cities). In a study
with 42 professional developers—working either as pairs or
individually–they found that the multi-touch table encouraged
the participants to work together and collaborate with each
other [31]. SEE is a 3D virtualization of this setting, where
code cities are the primary means of visualization. We note

1https://www.axivion.com
2https://en.wikipedia.org/wiki/ConQAT



that SEE offers also 2D scatter plots within the virtual scene
to visualize additional metrics (a block in a city has only three
dimensions and one color). In addition, SEE provides a shared
whiteboard that can be used by participants of a session to
create their own sketches about their software. Yet, metric
scatterplots and whiteboard were not used in our study).

In SEE, a program’s components are visualized in a code
city as blocks for atomic components or areas for components
consisting of other components, where an area is simply a
block with zero height3. The three dimensions of an atomic
block and its color are determined by code metrics that can be
selected by a user. The size of an area, on the other hand, is
determined automatically such that all its nested components
fit into the area. Thus, the hierarchy of the program is
depicted through spatial enclosing. The layout of a code city is
computed by automated hierarchical layouts. SEE offers tree
maps, circle and rectangle packing, and a balloon layout.

Dependencies among the program’s components are de-
picted by edges. To reduce visual clutter, edges are hierarchi-
cally bundled, as proposed by Holten [32], and the direction of
the edges is indicated through a color gradient rather than an
arrow head. In addition, SEE offers an option to show edges
only on demand when a block is hovered over by the user.

The code cities are dynamic, enabling users to highlight and
move and modify parts of the visualized code cities in real-
time, visible to all participants. Because the code city and
the avatars of the users are in the same scene, a gesture of
a user can be traced meaningfully. For instance, if a user
points to a block in the code city, a laser beam will be
drawn from the avatar’s hand to the pointed block that can be
seen by all participants. This distinguishes SEE from general
video conference systems, such as Zoom, Teams, etc., where
the video tiles of the particpants are totally disconnected
from the shared screen. Moreover, all users can walk freely
through the virtual room and view the code city from any
angle independently of all other participants. Every user can
manipulate the code city, for instance, by moving blocks to
group components semantically—which is neither possible in
video conference systems where only one person can interact
with the shared content. SEE makes sure that the effect of
such manipulations will be propagated to all connected client
computers such that all participants always have the same
consistent view of the world.

A key use case for SEE is supporting the reflexion model-
ing [1]. To do that, the components of the implementation—
extracted through a static analysis—need to be mapped onto
architecture components—manually modeled by an architect.
After that, an algorithm can compute the convergences, di-
vergences, and absences between implementation and archi-
tecture. A convergence is an architecture dependency that
has at least one corresponding implementation dependency.
Any such corresponding implementation dependency is said
to be allowed. A divergence, on the other hand, is an im-
plementation dependency that is not allowed according to

3https://youtu.be/jQlBIcRubZw

the architecture, that is, there is no convergent architecture
dependency. An absence is an architecture dependency that
has no corresponding implementation dependency. Here, an
implementation dependency is missing. This paper will focus
on this use case and its implementation within SEE with the
new addition of automated mapping suggestions.

The same kind of visualization as a code city used for
the implementation can be used for the architecture model,
too. Typically, however, users would model the architecture
manually in SEE and, thus, create the layout themselves,
although architectures can also be imported and automatically
laid out by SEE if needed. Intuitively, if architects model the
architecture manually, they will group elements semantically
as predicted by the laws of Gestalt [33], while automated
layouts make their decisions based only on non-semantic
constraints such as spatial fit. In most cases, architecture
components do not have any metrics associated (although they
could in SEE), such that their height is zero and their width
and depth are determined by architects, again allowing them
to underlay these dimensions with their own meaning, for
instance, to draw more prominent components larger or to use
similar dimensions for semantically similar components. For
the expected dependencies among architecture components,
again edges can be drawn. Because the code city of an
architecture is generally much smaller than a code city for
an implementation, users can most often afford to show all
edges permanently.

For the use case of reflexion modeling, the two code cities
for the implementation and architecture are put on a table side
by side. The components of an implementation (both blocks
or areas) can be dragged from the implementation city onto
architecture components. While dragging an implementation
component over an architecture component, an incremental
reflexion analysis [22] calculates the changes of edges as
if the dragged component were mapped onto the hovered
architecture component and those changes are immediately
shown. This allows a user to quickly run a what-if analysis:
“What would happen if I mapped this component here?” The
changed edges receive a shiny effect such that they can be
distinguished from previously existing, unchanged edges. The
mapping is finalized when the dragged component is dropped.

The suggested mappings are visualized whenever a user
picks up an implementation component. Then the suggested
architecture areas it can be mapped to will be highlighted
through a shiny effect. Currently, the highlighting is the same
for all candidates independent from their attraction.

If it is necessary for users to see the source code when
deciding where to map an implementation component, they
can open a code window for a selected component. The code
window uses syntax highlighting for better readability as well
as scrollbars if the complete source code does not fit into the
window. The window can be dragged freely in the scene and
on demand be shared with other participants connected via
different SEE clients. In addition, SEE offers a classic tree
view (as offered by IDEs) to show the components of a city
and their nesting hierarchy. This tree view also allows a user



Fig. 1. Example scene for reflexion modeling

to search for the names of components using fuzzy search.
An example of a virtual room for reflexion modeling is

shown in Figure 1. There are three participants present in
the room, where the screenshot is taken from the first-person
perspective of one of the avatars. The scene shows a partial
mapping for a compiler architecture and its implementation.
The architecture is shown on the left, where green areas
represent architecture components. The implementation com-
ponents are either on the right at their original location if
not yet mapped or on the left if they are already mapped.
The architecture dependencies, in this example, are either
convergences drawn as green edges or absences drawn as
yellow edges. The edges added as a result of the most recent
mapping step are highlighted by a shiny effect.

The implementation of SEE is based on the game engine
Unity and developed in C#. Its source code is published under
the MIT license and publicly available on GitHub4.

IV. DESIGN OF THE USABILITY STUDY

We hypothesize that automated suggestions make it easier
for the user to establish the mapping in reflexion modeling
as integrated in SEE. Hence, the aim of our study is to
investigate the usability of our approach, where we adopt
the more comprehensive notion of usability by the standard
ISO/IEC 9241: “The extent to which a product can be used
by specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use.”

The effectiveness of the automated mappings in terms of
recall and precision are evaluated in great detail in the other
paper we submitted to this workshop [25]. That is why this
study focuses on effort (how much work is needed by the
user to conduct the mapping with and without suggestions),
efficiency (how much time can be saved), and satisfaction
(how pleased is a user with our implementation of reflexion
modeling). The concrete measures for these aspects follow in
Section IV-A.

The “product”—as mentioned by ISO/IEC 9241’s
definition—whose usability is to be investigated is our
implementation of reflexion modeling using code cities,
enriched by automated suggestions. The “users” will be

4https://github.com/uni-bremen-agst/SEE

developers and software architects; further details on the
experimental subjects representing these users follow in
Section IV-C. The “goal” of developers and architects using
reflexion modeling in general is to verify or reconstruct
a static software architecture that truly describes a given
implementation including all deviations. In our study, the
subjects are given the more specific goal to extend a partial
mapping as one step in the overall process of reflexion
modeling, as this is the subject of our research. The “context
of use” manifests in the concrete tasks for the subjects of
our study along with the project for which to apply reflexion
modeling. The concrete goal and context of use within our
study will be described in Section IV-B.

The overall usability in the sense of ISO/IEC 9241 in gen-
eral is always determined by a combination of both functional
aspects—will a software provide the expected output given
some input—and aspects of interaction and representation—
how can users achieve their goals and how comprehensible
is the output? The functional aspects in our case include
the automated suggestions and the incremental calculation
of reflexion results based on a partial mapping. Represen-
tational aspects include the visualization of implementation
and architecture as code cities, using spatial enclosing for
the representation of both the component hierarchy and the
mapping, the representation of actual and specified dependen-
cies as colored edges (where actual dependencies are shown
only on demand), the highlighting of changed dependencies
and mapping candidates through a glow effect, the immediate
feedback on what the results would be if a grabbed block
were put on an architecture area and more. The interactions
offered by our approach are the hovering over blocks of
interest to show their dependencies and allowing a user to
drag blocks representing implementation components onto
architecture components by way of direct manipulation.

As mentioned in Section II, there are other tools imple-
menting reflexion modeling. Although functionally similar,
most of these do not offer automated mapping suggestions
interactively, which is the focus of our study. There are only
a few tools, for instance, one by Biehl and Löwe [29] and
one by Kim et al. [26], which offer automated mappings
interactively. Both of these tools, however, are specifically
designed for model-driven software development (MDSD),
where they can leverage information that is only available in
an MDSC context. Our tool aims at a broader use outside
of MDSC. Moreover, the interactions and representations of
tools offering automated mappings differ very much from our
approach. If we compared our approach to these tools, any
observed difference could result not only from the availability
of automated mappings but also from interactive or represen-
tational differences among the tools. Yet, our primary interest
is whether the automated mappings help. That is why we
decided not to compare our tool to other tools also offering
automated mappings. Instead, to isolate the contribution of
automated mapping suggestions in our controlled experiment,
we will compare our tool once with and once without mapping
suggestions, where all other aspects are kept alike.



The Master Thesis by Erhardt provides more details on the
study including a detailed task description [34]. The collected
data and evaluation scripts in R are available, too5.

A. Dependent variables

In this section, we will first go into the details of the
measured dependent variables regarding effort, efficiency, and
usability.

Effort: One measure for the perceived effort in fulfilling
tasks is the NASA Task Load Index (NASA-TLX) score [35],
which is a well established index in human-computer inter-
action [36] even though not originally designed for software.
This index is implemented by way of a questionnaire consist-
ing of six questions asking a subject for the demands imposed
on the subject (mental, physical, and temporal demands) and
for the interaction of the subject with the task (perceived effort,
performance, and frustration)6. Each question is answered on
an ordinal scale with 21 gradations from very low to very
high [35]. Scale ratings are scored based on where the user
marked the scale. Tick marks range from 0 to 100 by 5
point increments. Lower values are better. The values for
the six different aspects are combined into a single value as
weighted average of the aspects. The weights are determined
by showing each subject all 15 pairwise comparisons of the six
dimensions and asking them to select which better represents
their experience of demand. The number of times a dimension
was selected determines its final weight.

A simplified variant—waiving the cross-validation of the
individual subscales—is the Raw NASA-TLX (Raw-TLX)
index. It uses the identical questions. The only difference is
that the six ratings are simply averaged or added to create
an estimate of the overall workload. Various studies found a
high correlation of the subscales [37] of the questionnaire.
Moreover, Hart could not find an advantage of the original
TLX over Raw-TLX (neither vice versa) regarding the overall
rating outcome in a meta analysis of 29 studies in which Raw-
TLX was compared to the original version [38].

The Raw-TLX has the advantage that it puts less burden on
the subjects by not forcing a subject to make all 15 pairwise
comparisons of the six dimensions. That is why we used Raw-
TLX in our study. We will report the results for each of
the six questions individually and the total Raw-TLX as the
unweighted average of the individual ratings.

We made one more simplification by reducing the 21
gradations of the original NASA-TLX to only 10 to further
simplify the decision making of the respondents. Yet, the
selections of the users on this scale are still scaled to the
original value range of 0–100.

In our study, we distinguish between the conditions with
suggestions (S) and without suggestions (NS). Hence, our null
hypothesis H0(TLX) regarding effort that our study attempts
to falsify is as follows: The effort during reflexion modeling is

5https://doi.org/10.5281/zenodo.14718505
6The exact questions can be found here: https://humansystems.arc.nasa.gov/

groups/TLX/downloads/TLXScale.pdf.

the same or higher with suggestions than without suggestions:
Raw-TLXS ≥ Raw-TLXNS.

Efficiency: To capture efficiency, we measure the duration
of reflexion modeling for a user. We call this duration tS for
the condition with suggestions and tNS for the condition with-
out suggestions. Consequently, our null hypothesis, H0(D), to
be falsified can be stated as follows: The duration of reflexion
modeling with suggestions is greater than or equal to the
duration without suggestions: tS ≥ tNS.

Usability: The perceived usability is measured by the Sys-
tem Usability Scale (SUS) [39]. SUS is based on a question-
naire with ten different questions answered on a five-point
Likert scale from strongly disagree to strongly agree.

The exact questions are listed in Table III, although we
need to note that we used a German translation [40] because
our participants were Germans. The SUS questions are al-
ternated between positively and negatively worded, which is
recommended by the body of research on questionnaire design
to avoid bias. The weight of each positively worded answer
is the position on the five-point Likert scale minus 1 and
then multiplied by 2.5. To be able to quantitatively compare
positively and negatively worded questions, the weight of the
latter is 5 minus the scale position and then multiplied by 2.5.
That is, the weights of all positively and negatively worded
questions is in the range from 0 to 10. The ten individual
weights are summed up to the total SUS value. The factor of
2.5 for the weights is used to obtain a maximal total SUS value
of 100, which allows a direct interpretation as a percentage.
The minimal value is of course 0. The higher the value, the
better is the perceived usability.

Unlike for effort and efficiency, we do not compare the
two conditions with and without suggestions for SUS. The
interaction for a user to conduct reflexion modeling is almost
identical; the only difference is that the suggested mapping
candidate is visually highlighted when suggestions are avail-
able. This little detail is hardly worth to be evaluated sepa-
rately. Instead we were interested in the perceived usability for
our reflexion modeling as a whole. Section V-C will report the
SUS for only one condition where suggestions are available.

There are many alternative post-study usability question-
naires, such as PSSUQ [41], CSUQ [42], TAM [43], or
UEQ [44]. We opted for SUS because it is a widely used
and well evaluated questionnaire [36], the number of questions
asked is still feasible for respondents not to fatigue, it is
free to use (no license fee) [36], it is applicable to small
sample sizes [45], it is technology agnostic [36] and there
is a recommended German translation [40], [46].

In addition to the standardized SUS questions, the subjects
were asked for free-form qualitative feedback on the approach.

B. Tasks

Our study aims at the evaluation of the automated sug-
gestions for mappings in the course of reflexion modeling.
Thus, a subject in our study was confronted with a software
system in which it is necessary to assign orphaned (i.e., not
yet mapped) modules to architecture layers. An architecture



model and a visualization of the implementation exist already.
Both are represented as code cities side by side as explained
in Section III. Because the automated mapping suggestions
assume a partial mapping, some of the implementation mod-
ules are already mapped onto architecture components. The
tasks require a subject to assign orphaned modules onto the
architecture components.

Because we want to evaluate the added value of automated
mappings versus no suggestions, our experimental design
has one factor with two levels resulting in two treatments:
(S) with automated suggestions and (NS) without automated
suggestions (suggestions were turned off).

In order to maximize the data gain per subject and be able
to make an intra-personal comparison, every subject received
both treatments in our study. Thus, we had to create two tasks
for each subject. Task TS represents the treatment S, and task
TNS the treatment NS. All other aspects of TS and TNS needed
to be as equals as possible.

As subject received two treatments, they were randomly
assigned to one of two groups in order to balance carry-over
and learning effects. One group started with task TS and the
other group with task TNS to alternate the order in which
suggestions are available.

In both tasks, the subjects were to conduct the mapping as
part of reflexion modeling for a real system. To keep TS and
TNS as comparable as possible, we used the same system in
both tasks, however, different orphaned modules were to be
mapped onto different architecture components.

A system suitable for our study should be large enough;
otherwise automated suggestions are not needed. Yet, a suit-
able system can only be so large that a subject without prior
knowledge is still capable to decide where to map modules.
Otherwise, the mappings could possibly be arbitrary due to
a lack of understanding. Equally, the structure of the system
must not be trivial. Otherwise, the user would be underchal-
lenged with the task, which would mean that no benefits could
be expected from the automated suggestions. That means,
there must be sufficiently many classes and dependencies in
the system. This requirement is also necessary simply to be
able to calculate an initial mapping. Without initial mappings,
no automated suggestions can be made by HugMe. In addition,
the subjects should be familiar with the programming language
used, if they needed to consult the source code to make their
mapping decisions. To increase the pool of subjects we can
draw from, the programming language should be popular.
The same holds true for the application domain of a suitable
system.

For alle these reasons, we selected the spring framework
fork of the Spring sample project PetClinic7. Written in Java,
it illustrates the main concepts of developing a web application
based on the Spring framework. PetClinic consists of 47 Java
files. An informal box diagram exists that sketches its four-tear
layered architecture8, consisting of controller classes, which

7https://github.com/spring-petclinic/spring-framework-petclinic
8https://de.slideshare.net/slideshow/spring-framework-petclinic\

-sample-application/71978076#4

Fig. 2. Architecture of PetClinic as used in the study

are used from the view of the web page; service classes,
which implement the application logic; and repository classes,
which execute database accesses. The informal architecture
diagram visualizes those layers as stabled boxes as it is
common for layered architectures. The diagram does not
have any arrows to describe explicit dependencies. Instead,
we reverse engineered them from the code and the usual
interpretation of layered architectures, where lower layers
must not access higher layers. The ’Controller’ layer uses the
’Service’ layer and the ’Service’ layer uses the ’Repository’
layer. The implementation of PetClient has no component for
the ’View’ because PetClient is a server application and the
view is rendered on the client side in a connected browser.

We added two more architectural components to the simple
layered architecture sketched by the mentioned box diagram.
All layers mentioned above use common data objects, which
we summarized as a ’Model’ component. In addition, general-
purpose classes are assigned to the ’Util’ component based
on their namespace. The architecture we used in the study is
shown in Figure 2 and its visualization in SEE can be seen
in Figure 3. All blocks in the implementation had the same
zero height and the same surface are to reduce the chances of
distraction.

Based on the namespaces of the modules in the sample
project, we constructed an oracle mapping to be able to make
automated suggestions. In our study, the ADC-Attract function
was used, as it achieved the best mapping according to the
oracle. In the course of the study, it can therefore be assumed
that the automated suggestions make sense.

The users had to map classes. To prevent further learning
effects, the orphaned classes for the fist task were removed
for the second task from the code city for the implementation,
so that completely unknown classes were to be mapped in the
subsequent tasks solved by the same user. A balanced selection
was made so that the subjects in the study had to assign the
same number of classes to the same architectural layers. The
specific classes for the tasks are listed in Table I.

The depdencency graph of the implementation of PetClinic
was gathered through a static analysis implemented by a com-
mercial tool developed by Axivion. Third-party components
used by the files of PetClinic such as Java libraries or Spring
classes were removed from the dependency graph as they do
not belong to PetClinic and because the architecture modeled
only PetClinic and not its surroundings.

Before solving the tasks, all respondents were asked to
provide brief demographic information and details of their
technical skills. This information was collected in order to



Orphaned classes of the task Layer

Orphaned classes of task A

petclinic.web.PetTypeFormatter controller
petclinic.repository.jdbc.JdbcVisitRowMapper repository
petclinic.repository.jdbc.JdbcPetRowMapper repository
petclinic.web.PetController controller
petclinic.util.CallMonitoringAspect util
petclinic.model.Pet model
petclinic.model.Visit model

Orphaned classes of task B

petclinic.web.PetValidator controller
petclinic.repository.jdbc.OneToManyResultSetExtractor repository
petclinic.repository.jdbc.JdbcPetVisitExtractor repository
petclinic.web.VetController controller
petclinic.util.EntityUtils util
petclinic.model.Vets model
petclinic.model.NamedEntity model

TABLE I
OVERVIEW ON ORPHANED MODULES

Fig. 3. Code city for the tasks

better categorize the sample of this study. The respondents
were then told that they would be put in the role of a
software architect. Subsequently, reflexion modeling was then
explained in textual and verbal form. Before starting the task,
the subjects had the opportunity to familiarize themselves with
SEE and reflexion modeling on a second project. They could
run the reflexion analysis and use the tree view and the code
windows. In particular, they got to know the highlighting
of the automated mapping suggestions. As soon as they felt
confident with SEE, they were introduced to the architecture
of PetClinic. A subject was instructed to assign the orphaned
classes listed in Table I at their own discretion within 20
minutes, using the SEE features discussed. At the start of the
tasks, the time was recorded via a KoboToolBox form. After
completing each task, the subjects were asked to stop the time
recording and answer the Raw-TLX questionnaire. After both
tasks, they had to fill in the SUS questionnaire and were asked
for written qualitative feedback.

C. Sampling and Demographics

Fourteen subjects volunteered for the study originally. Only
software developers were considered, as a basic understanding
of programming concepts is a prerequisite for completing

the tasks. All subjects were either professional developers or
computer-science students. We gained them through conve-
nience sampling, that is, we invited professionals and students
we knew personally.

One participant was very tired during the study, because
the study was conducted late in the evening. In addition,
many bugs occurred during his session (nodes fell under the
table and could no longer be controlled). The problems were
so extreme that we decided to remove the subject from the
evaluation as a measurement error. This left us with n = 13
subjects.

The age of the subjects ranged between 24 and 36 years.
Unfortunately, we did not succeed in including female devel-
opers. All subjects were familiar with Java development. Four
of the subjects stated that they had experience with Spring.
Five subjects had already used SEE before. Four subjects were
themselves involved in the development of SEE, although not
in the implementation of reflexion modeling.

V. RESULTS

A. Effort in terms of Raw-TLX

Table II shows the Raw-TLX. We report the mean values
even though we are aware that the answers on the Likert scale
are only ordinal data and only the medians would be valid
according to measurement theory. The reason for that is that
the authors of the NASA-TLX already suggest to compute
averages and to sum them up to the total TLX index, which
assumes an interval scale.

On all subscales except for the Performance subscale, an
effect of reduced cognitive effort is observed in the group with
suggestions (the lower the index, the better). The average total
score of approximately 36 in the group with suggestions is
around seven points below the value of the comparison group
with approximately 43 scores. The standard deviations in both
groups fluctuate by 18.5 scores.

To verify whether the observed differences are statistically
significant, we applied a significance test. A t-test can be used
only if normal distribution can be assumed or if the sample is
large enough (more than 30 data points). Our sample is small
and the Shapiro-Wilk test yielded a p value of 0.0091. This
test calculates the p value for the null hypothesis that the data
has normality. A p value greater than the significance level
implies that the distribution of the data is not significantly
different from normal distribution. With a p value of 0.0091
we cannot assume normality.

Instead, we use the paired asymptotic two-sample Fisher-
Pitman permutation test. This test does not assume a particular
distribution of the population and works for all ordinal data. A
paired variant is to be used because our two samples are not
independent since every subject contributed to data of both
samples. In that case, the differences of the paired data are
used as the rank. A tie may occur when the difference between
a pair of observations is zero. This means that the two values
being compared are equal, resulting in no difference to rank. In
our sample with n = 13, this happened twice, that is, in about
15 % of the cases. Because of this relative high percentage of



Subscale TS TNS

Mental Demand 35.04 (±26.78) 50.43 (±29.26)
Physical Demand 25.64 (±29.88) 34.19 (±34.39)
Temporal Demand 14.53 (±18.36) 22.22 (±27.59)
Performance 72.65 (±29.61) 62.39 (±18.45)
Effort 31.62 (±22.61) 44.44 (±26.45)
Frustration 35.04 (±26.78) 44.44 (±25.26)

Total Raw-TLX 35.75 (±18.42) 43.02 (±18.74)

TABLE II
AVERAGED RESULTS OF THE NASA-TLX QUESTIONNAIRE PER TASK

(THE VALUES IN BRACKETS ARE THE STANDARD DEVIATION)

ties, we did not use the Wilcoxon-Pratt signed-rank test, which
would have otherwise been an option. The statistics literature
recommends permutation tests for such cases.

The p value for the paired asymptotic two-sample Fisher-
Pitman permutation test is 0.05208, which is extremely close
to, yet above our significance level of α = 0.05. That is why
we cannot reject the null hypothesis H0(TLX).

In meta-analyses for reference values of the NASA-TLX
questionnaire, Morten et al. [47] found an average TLX value
of 42(±13), while Grier et al. [48] found an average value
of 45(±14.99) for Raw-TLX. It is noticeable that TS , with an
average value of approximately 36 is far below these averages,
where lower is better. The Raw-TLX for TNS, with an average
value of 43, is similar to the values reported in the literature.

In summary, even though the differences between TS and
TNS regarding Raw-TLX is not statistically significant (p =
0.05208) if an α = 0.05 is used, we can at least conclude
that the perceived effort for the mapping step in our reflexion
modeling is lower than average applications.

B. Efficiency in terms of duration

The subjects took 8 minutes and 40 seconds for task TS and
9 minutes and 33 seconds for task TNS on average. That is, the
processing of task TS , in which the suggestions were active,
took about one minute less on average. The measurements
for task TS varied by around 3 minutes and 54 seconds.
The standard deviation for task TNS is slightly higher with
4 minutes and 8 seconds.

Here, too, an effect is visible that speaks against the
corresponding null hypothesis H0(D) at first sight. For the
same reasons stated above, the t-test could not be used. The
Shapiro-Wilk test yielded a p value of 0.01574 for normality.
Unlike for the evaluation of Raw-TLX, there were no ties for
the paired comparison of duration, that is why we ran the exact
Wilcoxon signed-rank test to check whether the differences are
statistically significant. This test yielded a p value of 0.2939,
hence, the differences are not significantly different. In sum-
mary, although a difference in favor of mapping suggestions
could be observed, hypothesis H0(D) cannot be rejected.

C. Usability in terms of SUS

This section deals with the investigation of perceived us-
ability of our reflexion modeling with suggestions in SEE
as measured by SUS. No distinction is made here between
the two tasks because the only difference in SEE, when
suggestions are enabled, is the highlighting of mapping target

Questions Mean weight
Q1: I think that I would like to use this system frequently. 5.77 (±2.58)
Q2: I found the system unnecessarily complex. 7.69 (±2.79)
Q3: I thought the system was easy to use. 5.38 (±3.51)
Q4: I think that I would need the support of a technical
person to be able to use this system.

7.5 (±3.39)

Q5: I found the various functions in this system were
well integrated.

6.15 (±2.42)

Q6: I thought there was too much inconsistency in this
system.

6.92 (±2.53)

Q7: I would imagine that most people would learn to use
this system very quickly.

6.73 (±3.73)

Q8: I found the system very cumbersome to use. 7.31 (±2.97)
Q9: I felt very confident using the system. 6.35 (±2.82)
Q10: I needed to learn a lot of things before I could get
going with this system.

7.69 (±2.79)

Total average SUS 67.5 (±21.41)

TABLE III
MEAN WEIGHTS OF THE SUS RESPONSES (THE VALUES IN BRACKETS ARE

THE STANDARD DEVIATION)

canidates. All other interactions are the same. This difference
is very minor and we are rather interested in the overall
usability of our reflexion modeling.

Table III shows the averaged SUS weights per question and
the total SUS (the values for negatively worded questions
are already inversed; all respones are multiplied by 2.5 as
explained in Section IV-A).

We note—analogously to Section V-A—that the reponses
for the SUS questions are given on a Likert scale and, hence,
only ordinal, so that averaging them is actually against the
principles of measurement theory. Yet, such is the procedure
for SUS recommended and practiced in the scientific literature.
Calculating the total SUS by summing up the individual
weights already assumes an interval scale.

The SUS score of the sample reaches 67.5 points. In many
studies, a SUS score of 68 is given as a reference value for
average usability [49]. This value is close to the value that
could be measured in the sample. Despite a small sample, an
impression of the usability of reflexion modeling in SEE can
be gained here. Nielsen argues that five subjects suffice to find
major usability issues [50].

Beyond the quantified usability in terms of SUS, we also
collected qualitative data as free-form feedback from the
subjects. This helps us to identify possible problems which
could have had an influence on the SUS score and the
other dependent variables. The qualitative feedback from our
subjects on the use of reflexion modeling in the code-city
metaphor reveals several recurring themes and issues. The
most important points are summarized below.

1) User interface and interaction: Change of interaction
modes. Two subjects found switching interaction modes via
the space bar unintuitive. The context menu was preferred.
Conflicts with control elements. Two subjects reported prob-
lems with controlling the camera and displaying context menus
by right-clicking. When turning the camera, the context menu
was opened unintentionally. Difficulties with the selection.
Three subjects mentioned problems when selecting objects in
the code city. A spongy selection was criticized. In another
run, nodes were overlaid by the layout after a movement and
could no longer be selected. In addition, the freezing of the



’Show-In-City’ animation was mentioned, which blocked the
selection of a node. Legend and orientation. Two respondents
wanted a clear legend for control commands. Code window.
The code window caused problems for two subjects because
it allowed unintentional interactions with the code city in the
background the window was in front of.

2) Visualization and layout: Edges and colors. Five sub-
jects reported problems with the visibility and color display of
the edges. The edges were sometimes described as too bright
or difficult to see. Among them were two subjects who wished
a clearer representation of the edge directions. One respondent
wanted architecture and implementation edges in different
colors. We assumed here that the coloring of the convergent
state was meant, as the edges are colored differently before
a state change. Two subjects stated that the architectural
edges were helpful. One subject’s interactions with nodes were
blocked by edges. Understandability of the recommendations.
Two subjects had difficulty with understanding the recommen-
dations and the user interface. Confusion caused by the layout.
Some respondents mentioned confusion due to the layout.
Visualization of the suggestions. One respondent stated that
he felt supported by the suggestions. Another emphasized that
the blink animation of searched and found blocks is lost in
the edges of the city.

3) Technical problems: Crashes and errors. Three subjects
experienced crashes during reflexion modeling, whereby the
user was flooded by a high number of pop-up error messages.
Missing functions. Some subjects wished for additional func-
tions, such as fixed perspectives or automatic assignment of
implementation modules.

D. Threats to validity

In our user study, several factors exist that could have
influenced the validity of the results and must be taken
into account. We distinguish between internal, external, and
construct validity.

Internal validity: Internal validity looks at whether the
variables were measured correctly. A potential influencing
factor is the Hawthorne effect, as the study was supervised,
which may have influenced the participants’ behavior. Errors
in our implementation may have influenced the SUS score.
Furthermore, errors and problems that only occurred in the first
or second tasks may have affected the RAW-TLX measure-
ment between tasks. The results also showed a remarkably low
NASA-TLX value for the domain. Possibly the time window
of 20 minutes allowed to the subjects to complete the tasks
was too generous. In addition, the mapping suggestions in the
study were highly precise. For suggestions with a higher error
rate, the suggestions could possibly offer users less reduced
cognitive effort in comparison. The tasks might have had
different levels of difficulty due to the implementation details
of PetClinic, which limits the comparability of the results
between the groups.

External validity: External validity looks at the general
transferability of the results. As the study is limited by a
small sample, the generalizability of the results is restricted.

Our subjects may not be representative for the population as
we used only convenience sampling. In particular, we did not
succeed in involving female developers. The task of our study
might have been too simple to demonstrate advantages of
automated suggestions. In addition, in practical applications,
the reduction of cognitive effort through suggestions depends
heavily on the precision and quantity of the suggestions. This
in turn depends on an existing system and its initial mappings.
Whether and how often suggestions can be used to reduce
the workload for other systems must be investigated by future
studies. Furthermore, the results are influenced by the concrete
visualization of the suggestions. Suggestions of the same at-
tract function in the same system with a different visualization
could burden the user less or more. The impression of the users
was largely gained from first-time users of SEE. If users have
more experience in using SEE, stronger or weaker effects on
effort, duration, and usability could arise.

Construct validity: Construct validity concerns how well
our measures reflect a concept that is not directly measurable.
We used NASA Raw-TLX as a measure for effort and SUS
as a measure for usability. Although they are widely used in
the scientific literature, they may not necessarily reflect effort
and usability, respectively, well enough.

VI. CONCLUSION

The automated mapping suggestions based on attract func-
tions were successfully integrated for real-time visualization
into our implementation of reflexion modeling in SEE. During
our user study, effects of reduced cognitive effort and time
savings were measured when automated suggestions were
available during reflexion modeling, although no statistical
significance of the observed differences could be found.
Despite technical difficulties during use, the implementation
of reflexion modeling in SEE showed an average usability
according to SUS. Accordingly, further improvement appears
to be necessary in order to increase its usability above average.
Our participants gave us many concrete hints. This includes
better visualization of edge directions and edge states, a more
reliable and precise selection of elements in the code city, and
better integration of the suggestions with the rest of the UI.

REFERENCES

[1] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
Bridging the gap between source and high-level models,” in ACM
SIGSOFT Symposium on the Foundations of Software Engineering,
1995, pp. 18–28.

[2] R. Koschke, “Industrial experience on code clean-up using architectural
conformance checking,” in Proceedings of the 12th European Confer-
ence on Software Architecture (ECSA): Companion Proceedings, 2018.

[3] A. Christl, R. Koschke, and M.-A. Storey, “Automated clustering to
support the reflexion method,” Information and Software Technology,
vol. 49, no. 3, pp. 255–274, 2007.

[4] M. Bibi, O. Maqbool, and J. Kanwal, “Supervised learning for orphan
adoption problem in software architecture recovery,” Malaysian Journal
of Computer Science, vol. 29, pp. 287–313, 2016.

[5] R. A. Bittencourt, G. J. d. Santos, D. D. S. Guerrero, and G. C. Murphy,
“Improving automated mapping in reflexion models using information
retrieval techniques,” in IEEE Working Conference on Reverse Engineer-
ing, 2010, pp. 163–172.



[6] T. Olsson, M. Ericsson, and A. Wingkvist, “To automatically map source
code entities to architectural modules with naive bayes,” Journal of
Systems and Software, vol. 183, p. 111095, 2022.

[7] Z. T. Sinkala and S. Herold, “InMap: Automated interactive code-to-
architecture mapping recommendations,” in IEEE International Confer-
ence on Software Architecture, March 2021, pp. 173–183.

[8] D. Link, P. Behnamghader, R. Moazeni, and B. Boehm, “Recover
and relax: Concern-oriented software architecture recovery for systems
development and maintenance,” in 2019 IEEE/ACM International Con-
ference on Software and System Processes (ICSSP), 2019, pp. 64–73.

[9] S. M. Naim, K. Damevski, and M. S. Hossain, “Reconstructing and
evolving software architectures using a coordinated clustering frame-
work,” Automated Software Engineering, vol. 24, pp. 543–572, 2017.

[10] K. Andrews, J. Wolte, and M. Pichler, “Information pyramids: A new
approach to visualising large hierarchies,” in IEEE Conference on
Visualization, 1997, pp. 49–52.

[11] J. Knodel and D. Popescu, “A comparison of static architecture com-
pliance checking approaches,” in Working IEEE/IFIP Conference on
Software Architecture (WICSA), Jan 2007.

[12] L. Passos, R. Terra, M. T. Valente, R. Diniz, and N. Mendonça,
“Static architecture-conformance checking: An illustrative overview,”
IEEE Software, vol. 27, no. 5, pp. 82–89, Sep. 2010.

[13] J. Buckley, A. LeGear, C. Exton, R. Cadogan, T. Johnston, B. Looby,
and R. Koschke, “Encapsulating targeted component abstractions using
software reflexion modelling,” Journal on Software Maintenance and
Evolution, vol. 20, no. 2, pp. 107–134, March–April 2008.

[14] C. Ackermann, M. Lindvall, and R. Cleaveland, “Towards behavioral
reflexion models,” in International Symposium on Software Reliability
Engineering, Nov 2009, pp. 175–184.

[15] W. Said, J. Quante, and R. Koschke, “Reflexion models for state
machine extraction and verification,” in IEEE International Conference
on Software Maintenance and Evolution, Sep. 2018, pp. 149–159.

[16] R. Koschke, P. Frenzel, A. P. Breu, and K. Angstmann, “Extending the
reflexion method for consolidating software variants into product lines,”
Software Quality Journal, vol. 17, no. 4, pp. 331–366, Dec. 2009.

[17] B. Tekinerdogan, E. Çilden, Ö. Ö. Erdogan, and O. Aktug, “Architecture
conformance analysis approach within the context of multiple product
line engineering,” in Australian Software Engineering Conference, April
2014, pp. 25–28.

[18] E. Çilden and H. Oğuztüzün, “A reflexion model based architecture
conformance analysis toolkit for OSGi-compliant applications,” in IEEE
International Conference on Software Architecture Workshops (ICSAW),
April 2017, pp. 263–266.

[19] A. Le Gear, J. Buckley, J. Collins, and K. O’Dea, “Software reconnex-
ion: understanding software using a variation on software reconnaissance
and reflexion modelling,” in International Symposium on Empirical
Software Engineering, Nov 2005.

[20] S. Herold, M. English, J. Buckley, S. Counsell, and M. O. Cinnéide,
“Detection of violation causes in reflexion models,” in IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering,
March 2015, pp. 565–569.

[21] R. Koschke and D. Simon, “Hierarchical reflexion models,” in IEEE
Working Conference on Reverse Engineering, Nov. 2003, pp. 36–45.

[22] R. Koschke, “Incremental reflexion analysis,” Journal on Software
Maintenance and Evolution, vol. 25, no. 6, pp. 601–637, 2013.

[23] R. A. Bittencourt, “Conformance checking during software evolution,”
in IEEE Working Conference on Reverse Engineering, Oct 2010, pp.
289–292.

[24] M. Romanelli, A. Mocci, and M. Lanza, “Towards visual reflexion
models,” in International Conference on Program Comprehension, May
2015, pp. 277–280.

[25] L. Erhardt and R. Koschke, “Automated mapping suggestions for the
reflexion analysis,” in Workshop on Software Architecture Erosion and
Architectural Consistency (SAEroCon), ser. ICSA 2025 Companion
Proceedings, 2025.

[26] T.-h. Kim, K. Kim, and W. Kim, “An interactive change impact analysis
based on an architectural reflexion model approach,” in IEEE 34th
Annual Computer Software and Applications Conference, 2010, pp. 297–
302.

[27] J. Buckley, N. Ali, M. English, J. Rosik, and S. Herold, “Real-time
reflexion modelling in architecture reconciliation: A multi case study,”
Information and Software Technology, vol. 61, pp. 107–123, 2015.

[28] J. Buckley, S. Mooney, J. Rosik, and N. Ali, “JITTAC: A just-in-
time tool for architectural consistency,” in ACM/IEEE International
Conference on Software Engineering, May 2013, pp. 1291–1294.

[29] M. Biehl and W. Löwe, “Automated architecture consistency checking
for model driven software development,” in Proceedings of the 5th Inter-
national Conference on the Quality of Software Architectures (QoSA):
Architectures for Adaptive Software Systems. Springer-Verlag, 2009, p.
36–51.

[30] C. Anslow, S. Marshall, J. Noble, and R. Biddle, “SourceVis: Col-
laborative software visualization for co-located environments,” in IEEE
Working Conference on Software Visualization, Sep. 2013, pp. 1–10.

[31] C. Anslow, “Collaborative software visualization in co-located envi-
ronments,” PhD Dissertation, Victoria University of Wellington, New
Zealand, 2013.

[32] D. H. R. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, Sep. 2006.

[33] M. Wertheimer, “Untersuchungen zur Lehre von der Gestalt,” Zeitschrift
für Psychologische Forschung und ihre Grenzwissenschaften, vol. 4, pp.
300–350, 1923.

[34] L. Erhardt, “Ein Vergleich von Attract-Funktionen für die Reflexions-
analyse hinsichtlich Struktur, Code-Termen und interaktive Nutzung,”
Master’s Thesis, Department for Mathematics and Informatics, Univer-
sity of Bremen, Germany, Aug. 2024.

[35] NASA, Task Load Index (NASA-TLX), 1st ed., NASA Ames Research
Cener, 1998.

[36] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of
the system usability scale,” International Journal of Human-Computer
Interaction, vol. 24, no. 6, pp. 574–594, Jul. 2008.

[37] J. C. Byers, A. C. Bittner, and S. G. Hill, “Traditional and raw task
load index (TLX) correlations: Are paired comparisons necessary?” in
Advances in Industrial Ergonomics and Safety I, 1989, pp. 481–485.

[38] S. Hart, “NASA task load index (NASA-TLX); 20 years later,” in
Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, vol. 50, no. 9, 10 2006, pp. 904–908.

[39] J. Brooke, Usability Evaluation in Industry. Taylor and Francis, 1996,
ch. SUS: A quick and dirty usability scale.

[40] B. Rummel and E. Rügenhagen, “System usability scale–jetzt auch
auf Deutsch,” https://community.sap.com/t5/additional-blogs-by-sap/
system-usability-scale-jetzt-auch-auf-deutsch/ba-p/13487686, 2016.

[41] J. R. Lewis, “Psychometric evaluation of the post-study system usabil-
ity questionnaire: The PSSUQ,” in Proc. of the Human Factors and
Ergonomics Society Annual Meeting, vol. 36, no. 16, 1992, pp. 1259–
1260.

[42] ——, “Computer system usability questionnaire,” International Journal
of Human-Computer Interaction, 1995.

[43] F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” MIS Quarterly, vol. 13, no. 3,
pp. 319–340, 1989.

[44] B. Laugwitz, T. Held, and M. Schrepp, “Construction and evaluation of a
user experience questionnaire,” in HCI and Usability for Education and
Work, A. Holzinger, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 63–76.

[45] T. S. Tullis and J. N. Stetson, “A comparison of questionnaires for assess-
ing website usability,” in Usability professional association conference,
vol. 1. Minneapolis, USA, 2004, pp. 1–12.

[46] T. Brix, A. Janssen, M. Storck, and J. Varghese, “Comparison of German
translations of the system usability scale— which to take?” Studies in
health technology and informatics, vol. 307, pp. 96–101, 09 2023.

[47] M. Hertzum, “Reference values and subscale patterns for the task load
index (TLX): A meta-analytic review,” Ergonomics, vol. 64, pp. 8–9, 01
2021.

[48] R. Grier, “How high is high? a meta-analysis of NASA-TLX global
workload scores,” in Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 59, no. 1, 10 2015, pp. 1727–1731.

[49] J. Sauro, “5 ways to interpret a SUS score,” 2018. [Online]. Available:
https://measuringu.com/interpret-sus-score/

[50] J. Nielsen, “Why you only need to test with 5
users,” 2000. [Online]. Available: https://www.nngroup.com/articles/
why-you-only-need-to-test-with-5-users/


