Comparing Attract Functions for the Reflexion
Analysis Regarding the Usage of Dependencies and
Words

Leon Ehrhardt
University of Bremen, Germany
leeeon333 @gmail.com

Abstract—In this paper, we propose a new attraction function
to be used to make mapping suggestions in the context of
the reflexion analysis. The reflexion analysis allows developers
to reconstruct or verify their architecture with regards to its
implementation. To be able to do that, the reflexion analysis
requires a mapping of source-code elements onto architecture
components. This mapping can be a labor-intensive manual task.
The attraction functions may ease this task by recommending
mappings.

Our method draws on existing methods and combines de-
pendency information with term similarity aggregated by way
of dependencies. We describe an evaluation that compares
our new method against three other existing methods, namely,
Count Attract and NB-Attract. All these attraction functions
are applied within the framework of the HugMe method. The
computed suggestions for all methods are compared against
oracle mappings provided by other researchers. As measures
for the comparison, we use recall and precision relative to an
oracle. Our results show that our new method can be applied
successfully and performs similar to NB-Attract. Furthermore,
whether the usage of dependencies or terms is more suitable
for high-quality mappings seems rather system dependent, even
though the attract functions using terms are performing better
more often. Our method, as a combination of dependency and
term similarity, could be particularly well suited in situations in
which one does not want to rely on only dependencies or only
term similarity.

Index Terms—reflexion modeling, semi-automatic mapping,
heterogenous data, orphan adoption problem, SEE, attract func-
tions, architecture recovery, HugMe-Method.

I. INTRODUCTION AND MOTIVATION

The alignment between a software system’s implementa-
tion and its architectural description is a recognized practice
to enhance the quality of software development. It enables
verification of the system’s structure, facilitates comprehensive
documentation, and aids in understanding the design. However,
due to the extended lifecycle of software systems, it is not
uncommon for architectural descriptions to be incomplete, out-
dated, or entirely absent. The concept of reflexion modeling [1]
can be used to maintain and re-establish consistency between
dependencies within the implementation and rules imposed
by an architectural description where both architecture and
implementation are represented as dependency graphs. Based

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) — KO 2342/8-1.

Rainer Koschke
University of Bremen, Germany

https://orcid.org/0000-0003-4094-3444

on a mapping of implementation modules onto architecture
components, the consistency of dependencies within a soft-
ware system can be checked.

The mapping of implementation modules onto architecture
components is typically a manual and labor intensive task [2].
To address this, automated techniques employing Attract Func-
tions have been proposed [3]-[8]. These functions calculate a
value expressing how well an architecture component attracts a
not yet mapped implementation component. They can be used
to suggest plausible mappings based on predefined criteria,
allowing for automated mapping suggestions when matches
surpass certain thresholds of reliability.

Most existing Attract Functions typically leverage either
structural information derived from the dependeny graphs or
textual information extracted from the source code, although
there are also hybrid approaches [6]. Yet, approaches that
effectively combine both types of information have been un-
derexplored. In particular, hybrid methods aggregating textual
similiarity over dependency edges have not been investigated
yet. Therefore this work presents a novel hybrid approach for
computing mapping suggestions and compares it to existing
structural, text-based, and hybrid methods.

II. RELATED WORK

In the following we present related research with a focus on
attract functions in the context of the mapping step as part of
the reflexion model. We discuss related research on reflexion
modeling in general and also on how the automated mapping
suggestions can be integrated into an interactive approach in
another paper [9].

A. Reflexion Modeling and the Orphan Adoption Problem

Reflexion modeling was initially applied in a case study
using Microsoft Excel to demonstrate its applicability to
complex systems [10]. In this study, over 400 modules were
manually mapped onto architectural components, showcasing
the challenge of large-scale system analysis. Concurrently,
the orphan adoption problem was introduced [11], focusing
on the automatic assignment of individual implementation
modules to existing architecture components. This problem
centers on reducing coupling between newly assigned modules
and their surrounding modules, providing a selection criterion

for module assignment. Unlike approaches that assign mul-
tiple modules simultaneously, Orphan Adoption emphasizes
incremental individual assignments, enabling iterative semi-
automatic clustering through suggested mappings.

B. Dependency-Based Approaches

One approach to address the Orphan Adoption problem in
the context of reflexion modeling is the HugMe method [3].
This approach uses attraction values between unassigned im-
plementation elements and existing architectural components.
Using statistical thresholds, the method identifies architectural
candidates for individual implementation elements. If only one
candidate is selected, the assignment can proceed automati-
cally.

Attraction values in HugMe are calculated through Attract
functions, which depend on various selection criteria. For
instance, the authors revisited coupling minimization in the
Count-Attract function, considering desired couplings speci-
fied via reflexion graphs, scaled by a parameter [3]. Another
significant contribution was MQ-Afttract, inspired by the Tur-
boMQ algorithm [12], which optimizes module cohesion while
minimizing coupling. Beyond these approaches, supervised
learning algorithms such as naive Bayes, k-nearest neighbors,
and neural networks have been employed to guide candi-
date selection based on weighted dependencies [4]. These
techniques underline the versatility of dependency data in
architecture recovery tasks.

C. Text-Based and Hybrid Approaches

In addition to structural dependencies, textual information
extracted from source code, such as identifiers, comments,
and file names, has been explored for clustering. Information
retrieval (IR)-based approaches, including /R-Attract and LSI-
Attract, leverage term frequencies to evaluate similarity be-
tween candidates and clusters [5]. While IR-Attract uses cosine
similarity, LSI-Attract additionally employs latent semantic in-
dexing to reduce term dimensionality before clustering. More
recently, NB-Attract, a multinomial naive Bayes classifier, has
demonstrated improved performance by incorporating textual
features into candidate selection [6]. When combined with
the method Concrete Dependency Abstraction (CDA), which
generates additional terms from structural dependencies, NB-
Attract integrates dependency and textual data to enhance the
mapping quality. However, as these functions depend upon an
initial set of assignments, they may not always be suitable for
early-stage clustering.

Methods such as InMap [7] and RELAX [8] extend text-
based clustering by indexing source code terms and associating
modules with thematic topics. Despite their strengths, these
approaches are not tied to reflexion graphs and require addi-
tional text annotations, limiting their applicability to automated
processes if no such textual annotations are available Hybrid
methods that combine text and dependencies often concatenate
Attract functions or apply CDA to boost the Fl-score [13].
Nonetheless, a direct integration of reflexion graphs into
hybrid Attract functions remains unexplored.

D. Summary

The NB-Attract function currently outperforms alternatives,
followed by Count-Attract, which often surpasses MQ-Attract
and IR-based functions in previous studies [5] [6]. Other
hybrid methods, InMap and RELAX, depend on external an-
notations, making them less suitable for reflexion modeling if
no annotations are available. Our work builds upon NB-Attract
and Count-Attract, aiming to introduce a novel approach that
integrates both dependency and textual data to resolve the
orphan adoption problem more effectively. While alternative
classifiers could replace naive Bayes, studies suggest minimal
performance differences within this context [14].

III. THEORETICAL FOUNDATIONS

In this section, we formalize different existing attract func-
tions and our new variant. We will first lay the formal
foundation for reflexion modeling.

A. Basic definitions

The input to reflexion analysis are two directed typed and
hierarchical dependency graphs and a mapping in between
them.

The first graph, G; = (Ny, Er C Ny x Nj), describes the
implementation, where N consists of declarations of methods,
fields, classes, packages and the like in the source code. Which
types of nodes occur, depends on the programming language.
The directed edges E; represent dependencies among these,
such as calls or field accesses. This graph is typically generated
by a static program analysis.

Likewise, the architecture model is also described as a
Ga = (Na,Es4 C Na x N4y) whose nodes represent
architectural components (modules, layers, etc.) and the edges
expected dependencies among these. This graph is typically
crafted manually by software architects.

In the following, we use the convention that symbols ¢; will
be used for nodes in N; and symbols a; for nodes in N4. If
we talk about a node that can be in either of the two graphs,
we simply use symbols n;. Similarly, we use F, which can
be E1 or E4, if the distinction is irrelevant.

The nodes and edges in both graphs are typed according
to an underlying type hierarchy, as we want to distinguish
between classes and methods, for instance. We are using the
function type-of to denote the type of a given node or edge,
respectively. The type hierarchy of node and edge types is
defined by a predicate ¢; is-a to denoting that type t; is a
(transitive) subtype of 5. For instance, a Java dispatching call
is a special kind of call, and a static call is a special kind of
call, too. We assume a general edge type dependency which
all other edges type derive from. The type hierarchy allows
an architect to be specific or general if needed. For instance,
the architect could allow a call between modules but no field
accesses. If the exact dependency does not matter, the architect
can simply use dependency for the edge type.

Some attract functions use weights for the importance of
edge types, which we model through a function \ : E — R{:

A(e) = weight(type-of(e))

based on a user-provided function weight weighing the impor-
tance of an edge type. For instance, a user might find a call
be more important than an import dependency.

All edges within the graphs are directed. Whenever we want
to abstract from the direction, we will use the notation {n,n'}
in the following; that is {n,n’} can refer to (n,n’), (n’,n) or
both.

Both graphs can be hierarchical, that is, their nodes may
contain other nodes, which we model by way of a partial
function parent-of that yields the parent node of a given child
node. The function is partial because a root node has no
parent. Based on this node hierarchy, we define the function
descendants-of that returns, for a given node n, the set of all
transitive child nodes within the subtree rooted by n including
n itself.

The function edges-of describes the set of all incoming and
outgoing edges of the descendants of n. One can think of
the function as a way to lift edges of descendants up to n to
consider all adjacent dependencies within the hierarchy.

edges-of(n) = {{n’,n"} € E | n' € descendants-of(n)}

To compute the reflexion model, nodes of the implementa-
tion, Ny, need to be mapped onto nodes of the architecture,
N 4. For that, we assume a set M C Ny x N4, where every
element (c,a) € M expresses that ¢ is mapped onto a. We
are using a set instead of a partial function just because
that eases the addition of new mappings in the description
later on. This mapping is to be provided by developers and
architects. The goal of the attract functions is to propose for
an unmapped ¢ € Ny additions (¢, a) to M. Unmapped means
that A(c,a’) € M yet (for any a’, be it a or different from it).

Set M establishes an explicit partial mapping. In case of
hierarchical nodes in N, a mapping can be implicit, too [15].
For instance, if a user maps a class, all its methods and fields
can be considered mapped implicitly, too, if they are not yet
mapped elsewhere themselves. To handle that, we define a
function maps-to to describe the complete mapping relative to
M, which considers the node hierarchy of the implementation
graph (where L is used to denote undefined):

maps-to(c, M) =

a:3(c,a) e M
maps-to(parent-of(c)) : B(c,a) € M
L : otherwise

Any implementation component, ¢, where maps-to(c, M) = L
holds, is called an orphan. Based on this mapping, the out-
come of the reflexion analysis can be defined. The analysis
expresses its results in terms of a function state-of : E —
{convergent, absent, divergent, allowed, 1 }. The states diver-
gent and allowed are reserved for edges in Ej to express
whether an implementation dependency, (¢,c¢’) € FEj, is
allowed according to the architecture or not:

state-of ((c, '), M) =

J(a,a’) € Ex :
maps-to(c, M) = a
allowed : , ,
A maps-to(¢', M) = a
A type-of((c, ")) is-a type-of((a,a’))
B(a,a’) € Ex :
. maps-to(c, M) = a
divergent : , ,
A maps-to(¢', M) = a
A type-of((c,c)) is-a type-of((a,a’))
1 maps-to(c, M) = L V maps-to(c’, M) = L

At this point it should be noted that a user of reflexion
modeling would generally assume an implicit self-loop for
all architecture nodes, which means that all implementation
components are allowed to depend upon other implementation
components mapped onto the same architecture component.
This allowance is not covered in our definition above to keep
the description simple.

The state of an architecture dependency, (a,a’) € E4, can
be either convergent or absent. An architecture dependency is
considered convergent if there is an allowed implementation
dependency for it; otherwise it is considered absent. The exact
formalization is irrelevant for the purpose of this paper. An
interested reader is referred to our paper where we introduce
hierarchical reflexion modeling [15].

Putting it altogether, a reflexion analysis has the input
(G1,G a, M) and implements the function state-of.

In Figure 1, an example of a reflexion model is presented,
illustrating the definitions so far. The blue circles represent im-
plementation components and the yellow squares architecture
components. The edge (ca,c4) is in the state allowed, due
to the allowing edge (a1,as). The implicit self-dependency
(a1,a1) allows the edge (c1,co). The mapping of ¢ to a; is
transferred to c3 via the function parent-of. Consequently, the
edge (c3,cq) is also allowed. The edges (cs,c4) and (cs, c3)
are in the state divergent, as no allowing edges (as,a;) and
(as, a2) exist. The edge (a2, a3) is in the state absent, as no
expected implementation edge exists. This could be resolved
by adding a dependency between (cq, c5).

Next we will introduce the attract functions, with the
codomain RS’ , that calculates the attraction of an orphaned
implementation component relative to an architecture compo-
nent. These function are used to select the mapping candidates.

B. Count-Attract

The definition of Count-Attract aims to minimize coupling
during the process of mapping, but also considers a scaling fac-
tor to consider coupling prescribed by the reflexion model. Our
definitions in the following are based on our prior work [3].

We first define the overall coupling of a given orphan, ¢ €
Nip, to its neighbors by summing up the edge weights for all

Source-Dependency Source-Dependency Source-Dependency

A

\ maps-to

Dependency

€ frr-rrommnmnnees > a1 allowed By a2 a3
A | A A
calls ! calls ' '
maps-to maps-to maps-to
N AN absent dependency At
{ c2 calls oCcayy -- - > C5
__/ N/ > %
Alowed ¢ \ /
E _ calls <> P
Absent parent-of, —
<> Divergent
g Pa andy _—
Inplicit (c3 e 777777//,,,/—'

Fig. 1. Example of a reflexion model

its direct neighbors that are already mapped:

> A({e ')

V{ec,c’} €edges-of(c):
maps-to(c’ ,M)# L

overall(c, M) =

Next we will calculate coupling under the assumption that
orphan, ¢, were mapped onto an architecture node, a. Here
we want to ignore all incoming and outgoing implementation
dependencies that are allowed according to the architecture
since they are an expected dependency. This can be accom-
modated by a function foOthers that ignores coupling to
neighbors mapped onto a different architecture component
(dependencies to implementation components mapped to the
same architecture component are allowed by default):

toOthers(c,a, M) =

>

V{c,c’ } €edges-of(c):
maps-to(c’,M)# L Amaps-to(c’ ,M)#a

scale({c,c'}, M U (c,a))

The logic whether and how dependencies are weighed is
specified by function scale in the equation above. If the
edge passed as parameter is allowed under the condition
maps-to(c) = a, a scaling factor, ¢ is applied. This parameter
can vary between O and 1 and is determined by the user. If
set to 0, the allowed dependencies are ignored completely; if
set to 1, they have the same weight as divergent dependencies.
Users would select a value closer to O (see below).

state((c,c'), M) =

allowed

Al(e,¢)) x ¢
scale((c,), M) =

otherwise

A(e,) :

Function toOthers—taking into account desired coupling rep-
resented in allowed dependencies—can be used to reduce the
overall coupling. Thus, Count-Attract can be formulated as the
difference between the two functions;

Count-Attract(c, a, M) = overall(c, M) — toOthers(c,a, M)

Because foOthers is subtracted from overall, implementa-
tion dependencies creating expected coupling have no negative
effect on the attraction value if ¢ = 0.

Count-Attract can be used to rank the target architecture
components for a given orphan. The best candidate would be
the one with the highest Count-Attract value.

C. NB-Attract

The function NB-Attract is based on the works of Olsson
et al. [6]. The NB-Attract function is a naive multinominal
Bayesian classifier and uses the oberservation of words and
mappings to calculate the attraction between an implemen-
tation node and an architecture node. The function treats a
given architecture node as a class and calculates a probability
that a given implementation node belongs to it. The function
is composed of the prior probability an architectural node is
chosen—calculated based on the current mapping—and the
likelihood an implementation node belongs to an architectural
component—based on the usage of words. Like other naive
Bayesian classifiers, NB-Attract assumes that the probabilities
to observe words are independent of each other. Even though
this assumption will generally not hold in our context, naive
Bayesian classifiers still often perform well in practice ignor-
ing this assumption [16]. Originating from Bayes’ theorem
and the assumption that the occurrence of evidence for all
classes has the same constant probability, we can assume the
following proportionality o:

NB-Attract(c,a, M) = P(a | ¢, M) < P(a, M) x P(c | a)

The function terms-of returns a vector representing the
frequencies of words associated with a given node. NB-Attract
considers only whether a word is present, but does not consider
its frequency. For a given architecture node, the function
accumulates the words of all implementation nodes mapped
to the architecture node, regarding the frequency of words, if
they appear across implementation nodes. We define W as a
set containing all words present in the system, thus ferms-of
is a function from nodes onto a |W| dimensional vector space:

terms-of : N +—» RV

The prior probability P(a, M) is based on the probability
an architecture node is chosen for an implementation node
regarding all mapped implementation nodes:

_ Hee Ni [maps-to(c, M) = aj|
Pla, M) = {c € N1 | maps-to(c, M) # L}|

The likelihood of an implementation node given an archi-
tecture node is the product of the probabilities of each word
associated with the implementation node appearing in the
given class. The probability for a word per class is calculated
by the occurrences of the word within the class divided by the
number of all words occurred within the class. To compensate
words unknown by the class, alpha smoothing with oo = 1 is
applied (terms-of(c)[w] yields the value for w in the vector
terms-of(c)):

P(c|a)=

terms-of{(a)[w] + «
[terms-of(a)| + a * |W|

H terms-of{(c)[w] *

Yw€eW:terms-of(c)[w]>0
D. Combining Text and Dependencies

In traditional text-based assignment methods, similarities
between candidates are typically determined by comparing
their words. This approach assumes that the frequency and
type of words used provide insights into the affiliation and
similarity of candidates. Commonly, the words are assigned
to architectural components based on which implementation
components are mapped to them. However, when comparing
implementation nodes for selection of an architecture node,
words shared across architectural nodes may disrupt the com-
parison.

Originating from this idea, the desired coupling defined by
the reflexion model shall be incorporated into the process.
Instead of assigning words to architectural nodes, they are
associated with architectural edges. Specifically, those words
shall be linked to the architectural edge that are typical for
the coupling of that part of the system. To achieve this, we
want to aggregate all words within an architectural edge which
are shared across implementation edges that are allowed by
the architectural edge. The aggregation of such words within
architectural edges is referred to here as Abstract Dependency
Concretization (ADC).

This approach enables a comparison between the neigh-
boring edges of an implementation node and those of an
architectural node, guided by the content of the reflexion
model. It is important to note the implicit dependencies in
the architecture, which would group words that contribute to
cohesion. Consequently, the text from modules, desired cou-
plings and cohesion are all considered during the assignment
process.

We want to define ADC formally. First, let the function
allowed-by return the allowing architecture edge for a given
implementation edge and a current mapping M if the edge is
allowed:

allowed-by((c,), M) =

state-of((c, ¢), M) =

(maps-to(c, M), maps-to(c’, M)) :
allowed

L : otherwise

We extend the function terms-of to describe the terms
associated with an implementation edge. These terms are
the intersection of the terms of both connected nodes, while
summing up the frequency of remaining words.

terms-of((c,c’)) = v
where v[w] =

terms-of(c)[w] > 0

terms-of(c)[w] + terms-of(c')[w] : A terms-of (') [w] > 0

0 : otherwise

Using both functions, the terms associated with an architecture
edge can be defined. The terms of an architecture edge are
the union of all terms associated with each implementation
edge allowed by the architecture edge, by summing up their
frequencies.

terms-of((a,a’), M) =

>

V(c,c')EET:
allowed-by((c,c’),M)=(a,a’)

terms-of((c, "))

Continuing, the ADC-Attract function can now be defined.
The function compares the words of all allowed adjacent
implementation edges of the candidate with the words of the
corresponding allowing architecture edges using a distance
function. For the mentioned implementation edges, the map-
ping maps-to(c) = a is assumed, because the state of edges
adjacent to the candidate is required for the calculation.

ADC-Attract(c,a, M) =

A{e, c'}) x ADC-Attract({c,c'}, M)

>

V{ec,c’} €edges-of(c):
state({c,c’'},MU(c,a))=
allowed
where

ADC-Attract((c,c'), M) =

overlap(terms-of((c, '), terms-of((allowed-by((c, '), M), M))

For the distance function, the above overlap coefficient of
two sets was chosen, as it showed better results in prelim-
inary experiments compared to Cosine similarity, Euclidean
distance, and Jaccard similarity [17]. In our case, the function
overlap treats words represented by a vector as sets, regarding
only the presence of words.

Source-Dependency Source-Dependency
A A
H A H
+= ov)erlap o= ov'erlap
daz ((e1,c3),(at,a3) a1 Lcted@tay) A3
A s A P A
' calls ' calls '
ma;?s-to mapls-to? maqs-to
s N : += overlap T\
(c2 | c1 | ((ct,cd),(at,a3) [e3)
_ : _
[]
calls Q parelnt-of calls
Allowed
Absent
c4 ADCAttract(cq,a1)

<> Divergent

Fig. 2. Principal of ADC-Attract

As illustrated in Figure 2, ADC-Attract calculates the attrac-
tion between cl and al by comparing the adjacent edges of
cl and its subtree with the allowing architectural edges. The
overlap of the words of each allowed implementation edge
with those words associated with the allowing architectural
edges is summed up. We note that the states of the adjacent
edges of cl are determined, but their associated words have
not yet been added to the allowing architectural edges during
this computation.

E. HugMe Method

The HugMe method [3] is utilized to identify sets of
architecture nodes for a given implementation node based
on outstanding attraction, which can be used for automatic
mappings or recommendations. The following functions are
operating on a matrix representing all attraction values be-
tween every implementation node and every architecture node.

Mathematically, the method operates as follows:

HugMeSetI(c)
HugMeSet2(c)

if |HugMeSetl(c)| > 0

HugMeSet(c) = { otherwise

where HugMeSetl(c) selects architecture nodes with attrac-
tion values sticking out statistically, that is, exceeding the
sum of the mean . and standard deviation sd. regarding all
architecture nodes:

HugMeSetl(c) = {a € N4 | attract(c,a) > T, + sd.}
[Nal
Te = TF] NA| Z attract(c, a;)
N
1 INal

T, — attract(c, a;))?

The combination of means and standard deviation is to
identify statistical outliers. If HugMeSetI(c) is the empty set,
HugMeSet2(c) is consulted, which uses only the mean as the
threshold:

HugMeSer2(c) = {a € Na | attract(c,a) > T.}.

An automatic mapping is proposed for c if the suggestion
is unique, that is, if |HugMe(c)| = 1.

IV. EVALUATION

This section presents our evaluation of the different attract
functions introduced in the previous section by comparing
them against an oracle mapping for different software systems.
We chose software systems with an available oracle that have
been used by other researchers before [6]. The oracle mapping
Mo for each system serves as the reference for evaluation,
but also generate an initial mapping required to calculate the
dependency-based attract functions. In the evaluation, we will
frame the mapping process as a classification problem.

Our evaluation will be somewhat more restrictive than those
in other studies as we will accept an automated suggestion only
if |HugMe(c)| = 1, that is, if the suggestion is unambiguous.

Other studies have often accepted the mapping suggestion with
the highest attraction if there are more. In addition, we will
neither use different edge weights (weight(t) = 1 for every
edge type t) nor apply the filtering originally proposed by
Christl et al. [3]. A filtering threshold lets the user control
which orphans are considered for the mapping at all. If orphans
share many dependencies with other orphans and only a
few with mapped ones, chances are high that the calculated
attraction values are not representative. Note that dependencies
between two orphans are not taken into account by HugMe.
The aim of the original filter is to limit uncertainty due to too
many orphaned neighbors. Our focus is on the influence of
dependencies and words themselves.

Our implementation is publicly available on GitHub! and
our research data at Zenodo?.

A. Procedure

Four groups of attract functions were evaluated: CAg, CA;,
ADC, and NB. CAq is Count-Attract incorporating desirable
coupling (¢ = 0), whereas CA; is Count-Attract disregarding
it (¢ = 1). ADC refers to ADC-Attract balancing coupling
and cohesion based on word occurrences, while NB denotes
NB-Attract solely relying on word distribution.

The dependency-based attract functions depend on an initial
mapping to be able to come up with meaningful suggestions.
To investigate the influence of the size of the initial mapping,
we will use different proportions, 6, of the oracle Mp.

An experiment is conducted for each artract variant as
follows:

1) Generate a random initial mapping of size # based on
Mo.

2) Calculate the attraction matrix using the attract function
under investigation.

3) Identify implementation nodes whose HugMeSet has
exactly one element.

4) If there is no such node, proceed to step 6.

5) Otherwise map the node to the identified architecture
node and return to step 2.

6) Save results based on current M.

The initial mapping is constructed iteratively in step 1 while
the fraction of mapped nodes remains below the threshold
6 and unmapped nodes are still available. At each step, an
implementation node is randomly selected from the set of yet
unmapped nodes and mapped to its corresponding architecture
component according to the oracle My.

Multiple stages of the reflexion modeling process are sim-
ulated by initializing mappings with different values for 6.

B. Measures

Our evaluation views the mapping recommendation as a
information-retrieval problem by comparing the suggested
mappings, M, against an oracle mapping, M. Thus, the

Uhttps://github.com/uni-bremen-agst/SEE
Zhttps://doi.org/10.5281/zenodo. 14726965

measures of success are based on true positives (TP), false
positives (FP), and false negatives (FN):

TP = [{(¢,a) € M | (¢,a) € Mo},
FP = [{(¢,a) € M | (¢,a) ¢ Mo},
FN=|{ce N;|Vae€ A:(c,a)¢ M}

where we exclude all nodes ¢ € N; already present in the
initial mapping.

Because we frame the HugMe method as a classification
problem, we use precision, recall and F-score as quality
metrics. Precision and recall are calculated as follows:

TP TP
TP + FP TP + FN

The F-Score combines precision and recall to provide a single
measure of performance:

Precision = Recall =

2 - Precision - Recall

F-S =
core Precision + Recall

C. System Preparation

The following Java systems are used for comparing the
attract functions, chosen for their comparability to related
works and the availability of complete oracle mappings:

o SweetHome3D (SHD) is an open-source 3D design tool
for interior design.

o CommonsImaging (CI) is a library for image file editing
and analysis.

e JabRef (JR) is an open-source tool for managing BibTeX
databases and references.

o TeamMates (TM) is a web-based tool for managing and
evaluating team projects in education.

o Lucene (LC) is an open-source library for full-text search
and indexing.

e Ant is a build management tool for automating build
processes.

For all systems, a dependency graph was created using
the Java2Rfg tool from the Axivion Suite®. Dependencies on
system libraries such as Java.util were removed to avoid
high coupling. Only nodes of type class are considered as
candidates for automatic mappings.

The oracle mapping for each system was derived from the
s4rdm3x project*. It has to be noted that the architecture
components of the oracles are not hierarchical. Moreover, we
ignored all implementation components gathered by Java2Rfg
that did not have a mapping in the oracle.

The systems are listed in Table I, showing architecture nodes
(A) and implementation nodes (C') for the mappings. Also
shown are the numbers of explicitly allowed (ea), divergent
(d), and implicitly allowed edges (ia) for a complete oracle-
based mapping. Be reminded that implicitly allowed edges
are dependencies within an architecture component, whereas
allowed and divergent dependencies are those between two
different architecture components. Thus, the proportion of

3https://www.axivion.com
“https://github.com/hObb3/s4rdm3x

System Version |A| |C| leal lia| |d| cr
SweetHome3D 1002382 9 366 2803 5541 0 034
CommonsImaging v1.0a2 21 371 278 3659 272 0.13
TeamMates v5.11 14 527 5215 4125 188 0.57
Lucene r1075001 7 786 2259 9531 281 0.21
Ant 584500 15 792 5884 6436 181 0.49
JabRef v3.7 6 1226 4430 11995 53 0.27
TABLE I

DATA OF SELECTED SYSTEMS

explicitly allowed and divergent edges over all dependency
edges, cr = (|eal+|d|)/(|eal + |d| + |ia]), represents a degree
of coupling (cf. Table I).

D. Term Preparation

Terms for each implementation node were prepared using
the following steps:

e Source code is tokenized using the ANTLR Java lexer.

« Keywords are removed.

o Identifiers are split by whitespace,
snake_case, and kebab-case conventions.

e Words are stemmed using the Porter-Stemming algo-
rithim implemented within the Accord.NET library.

o Terms with three or fewer characters are filtered out.

o Namespace components are added to node terms.

camelCase,

V. RESULTS

The results are shown in Figure 3. There is one diagram for
each pair of system and attract function investigated.

The procedure outlined in Section IV-A depends on the
fraction, 0, of the oracle mapping Mo as a prerequisite
for calculating the attract functions meaningfully, where the
concrete subset of M is chosen randomly. To investigate the
influence of 6, we ran this procedure for different values of
0, specifically for of 0.3, 0.5, 0.7, and 0.9 (shown on the x
axis of the diagrams in Figure 3). To control a potential bias
of randomization in the selection of the subset, the procedure
was repeated n = 100 times with different random samples
for the same value of #. Thus, instead of reporting only one
recall and one precision value for a particular €, we report the
average of the whole range of 100 runs. A dot in each diagram
represents the average, while the colored area indicates the
standard deviation.

In case of the F-Score, we also report the minimal and
maximal value beyond the average only. In addition to recall,
precision, and F-Score, the charts show also the mapping rate,
which represents the ratio of candidates mapped during the
mapping process in relation to the size of the complete oracle
mapping; more precisely, it is defined as (TP + FP)/|Mo)|.
This number gives an idea on how many suggestions were
made relative to the oracle. Necessarily, the higher 6, the lower
the mapping rate since all elements of the initial mapping
are excluded from the suggestions. Yet, in addition to these,
orphans may also be excluded because HugMe did not find
an unambiguous mapping (did not find any mapping or more
than one mapping candidate).

A. Observations

a) CA; (ignoring desired coupling): Precision of CA;
is consistently the lowest across three systems (TM, SH3D,
JR) for all € values compared to other functions. Also for the
system Ant, it is relatively low compared to C'Ay and ADC.
Its recall values are leading on four systems (TM, LC, CI,
JR), but the function did not achieve equally high precision
for those. In most cases, it is the least precise function on
the chosen systems. An exception to this trend is observed for
the CI system, where the function performed best among all
groups. A performance comparable to ADC-Attract and NB-
Attract is noted in terms of F-score for two systems (JR, LC),
particularly for higher 6 values. However, the function could
not achieve equal precision for smaller 6 values.

b) CAy (considering desired coupling): The precision of
CAy is very high even for smaller 6 values for five out of six
systems. System CI is the exception. Its recall values are lower
or at least equal compared to other groups for small 6 values,
resulting in lower F-scores. Recall is never exceeding 0.6. This
function performed best for Ant. For SH3D and Lucene, where
the highest F-scores were observed for this group, ADC-Attract
and NB-Attract achieve equal or higher F-scores for the same
0 values due to better recall within the other groups. For CI,
no mappings were found for 6 values greater than 0.5.

c) ADC: The observed maximum and average F-score
values for ADC-Attract are near or equal to those of NB-
Attract. ADC-Attract outperforms NB-Attract in precision for
6 > 0.5 for SH3D and performs weakest when it cannot find
any mappings, although it does still tend to achieve a relative
high precision then. It performs worse than CAy and CA; for
Ant with respect to very low recall values.

d) NB: NB-Attract achieves the best F-scores for four
systems (TM, SH3D, LC, JR), with values near 0.8 across all
values, except for TM. For Ant and CI, no automatic mappings
are found regardless of 6. When mappings are found, the
F-Score values are consistently higher or near to those of
other functions for all 6 values. NB-Aftract shows minimal
dependency on 6 for SH3D, LC, and JR and demonstrates
robustness to high standard deviations, which appear system-
dependent rather than function-dependent. It is also more
resilient to these variations for TM.

B. Discussion

The performance of each attract function appears to be
primarily system-dependent. Whether the usage of structure or
words is more suitable for identifying high-quality mappings
also seems to be system-dependent rather than adhering to a
general rule. Nevertheless, functions operating on words tend
to perform better in many cases.

The results demonstrate that the principle of ADC can
be successfully employed to formulate an attract function
that performs comparably to NB-Atfract on four systems.
ADC-Attract may serve as a solid compromise when it is
unclear which source of information can be trusted, words
or dependencies. The comparison of the performance of NB-

Method 0 P Precision vs. cr P Recall vs. cr P F-Score vs cr

ADC 03 -073(0.06) -0.33 (047) -0.60 (0.14)
CA, 03 -073(0.06) -047 (0.27) -0.87 (0.02)
CAg 03 -0.07 (1.00) -0.20 (0.72) -0.20 (0.72)
NB 03 -028 (044) -0.14 (0.70) -0.28 (0.44)
ADC 05 -073(0.06) -0.33(047) -0.33 (0.47)
CAy 0.5 -0.73 (0.06) -0.60 (0.14) -0.87 (0.02)
CAg 0.5 0.07(1.00) -0.07 (1.00) -0.07 (1.00)
NB 0.5 -0.14 (0.70) -0.14 (0.70) -0.28 (0.44)
ADC 07 -047(027) -020(0.72) -0.20 (0.72)
CA, 0.7 -073 (0.06) -0.60 (0.14) -0.73 (0.06)
CAo 0.7 041025 -0.07 (1.00) -0.07 (1.00)
NB 07 000 (1.00) -0.14 (0.70) -0.28 (0.44)
ADC 09 047(027) -020(0.72) -0.20 (0.72)
CA, 0.9 -0.60 (0.14) -0.60 (0.14) -0.73 (0.06)
CAo 09 028 (044) -0.07 (1.00) -0.07 (1.00)
NB 0.9 0.14(0.70) -0.14 (0.70) -0.28 (0.44)
TABLE II

KENDALL-TAU CORRELATION BETWEEN PRECISION, RECALL, F-SCORE
AND RATIO OF COUPLING EDGES cr FOR EACH GROUP AND THETA VALUE
(P-VALUES IN PARENTHESES).

Attract and ADC-Attract on the systems Ant and CI supports
this conjecture.

Regarding the performance in preliminary experiments [17],
the successful application of the overlap coefficient as the
distance function for ADC-Attract indicates that the presence
of words in modules is more critical for identifying high-
quality mappings than their frequency. ADC-Attract shares this
property with NB-Attract, suggesting an underlying principle.

The consideration of desired coupling within the reflexion
model leads to very high precision, as seen in the results
for CAg. However, this can also result in reduced recall
values. Although ADC-Attract also considers desired coupling
calculated by word usage, it achieves much higher recall values
while maintaining solid precision. Ignoring desired coupling
seems to increase recall for group CA; across four systems
(TM, LC, JR, CI), consequently enhancing the F-score.

The correlation data presented in Table II shows the rela-
tionship between the measured performance and the coupling
rate cr listed in Table I. Coupling negatively correlates with
ADC at low theta values but this relation weakens or turns
positive as theta increases, suggesting that coupling may
hinder performance with lower mapping rates () but might
enhance performance for larger initial mappings. Method
CA; shows a negative correlation with coupling, which is
expected, as this method does not take coupling edges into
account. When Count-Attract incorporates architectural rules,
its performance becomes more stable against high coupling.
NB shows low correlation with coupling, indicating coupling
does not significantly impact term distribution. Due to the
limited selection of systems and high p-values, these values
must be interpreted with caution; but they provide at least
some context for the results.

C. Threats to Validity

A significant limitation is the restricted system selection.
The choice of only six systems may not be representative and
constrains the generalizability of the findings. Additionally, the

details of the dependency graphs influence the results. The tool
Jjava2rfg plays a crucial role in determining the actual graphs.
Moreover, many of the systems analyzed are programmed in
Java. Language-specific conventions, such as file naming, class
naming, and namespace conventions, as well as the selection
of the AntLR lexer may impact both NB-Attract and ADC-
Attract.

The influence of desired coupling imposed by the reflexion
model depends highly on the architectural view and its level
of abstraction. We cannot make definitive statements about
how the complexity or abstraction level of an architectural
description would affect the performance of the attract func-
tions. Another aspect affecting the validity of the results is
the exclusion of edge weights. Incorporating this factor could
further enhance the structure-based attract functions and po-
tentially lead to different results. Furthermore, the correctness
of the oracle mappings plays a significant role in the quality
of the experiments. As most edges appear to be allowed
based on the system data shown in Table I, we can assume
that the oracle mappings reflect the architecture well. The
generation of the initial mapping was balanced in the sense
that each architectural layer was roughly assigned an equal
number of implementation nodes. However, this balance may
not transfer to real-world scenarios where correct mappings
are unknown, influencing the attract functions designed to
minimize coupling. The performance comparison of the attract
functions is strongly influenced by our implementation of
the HugMe method. It is possible that alternative selection
procedures for automatic assignments could lead to different
outcomes. Human correction or intervention in the semi-
automatic mapping process cannot be fully simulated through
automated experiments. This limitation highlights the need
for further investigation into the interplay between human
expertise and automated tools in mapping experiments.

VI. CONCLUSIONS

We introduced a new variant of an attract function, named
Abstract Dependency Concretization (ADC), that combines
dependencies and the presence of words to provide mapping
suggestions for reflexion modeling and compared it against
two existing methods, Count-Attract and NB-Attract. In our
evaluation, ADC has demonstrated the ability to effectively
combine dependencies and words, offering a versatile ap-
proach to formulating attract functions comparable to the
Bayesian approach. The suitability of dependencies or words
for mappings appears to be system-dependent, yet in many
cases the text-based attract functions perform better. While
the usage of desired coupling leads to high precision values
for Count-Attract, it is accompanied by a disproportionate
decrease in recall. On the other hand, ignoring the desired
coupling can lead to poor precision on small mapping sizes.
Further research is necessary to explore the integration of
additional information retrieval techniques and text classifi-
cation approaches with ADC. For example, extending ADC-
Attract with Latent Semantic Indexing (LSI) could potentially
generalize the matching process and improve recall. Simi-

larly, combining Naive Bayes text classification with ADC
represents a promising area for investigation. The advantage
of the possibility to parameterize ADC-Attract with edge
weights could lead to further improvement, which an approach
purely based on words could not provide. Additionally, the
evaluation of a broader range of systems is crucial for better
understanding the general applicability of the investigated
attract functions. In a preliminary study, we assessed how
automated mappings can be integrated in an interactive process
with architects [9]. More research is needed along this line and
it might also be worthwhile for future research to investigate
how to leverage feedback by architects on the automated
techniques to propose even better mappings.

REFERENCES

[1] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:

Bridging the gap between source and high-level models,” in ACM

SIGSOFT Symposium on the Foundations of Software Engineering,

1995, pp. 18-28.

R. Koschke, “Industrial experience on code clean-up using architectural

conformance checking,” in Proceedings of the 12th European Confer-

ence on Software Architecture (ECSA): Companion Proceedings, 2018.

[3] A. Christl, R. Koschke, and M.-A. Storey, “Automated clustering to

support the reflexion method,” Information and Software Technology,

vol. 49, no. 3, pp. 255-274, 2007, 12th Working Conference on Reverse

Engineering.

M. Bibi, O. Magbool, and J. Kanwal, “Supervised learning for orphan

adoption problem in software architecture recovery,” Malaysian Journal

of Computer Science, vol. 29, pp. 287-313, 12 2016.

[5] R. A. Bittencourt, G. J. d. Santos, D. D. S. Guerrero, and G. C. Murphy,
“Improving automated mapping in reflexion models using information
retrieval techniques,” in 2010 17th Working Conference on Reverse
Engineering, 2010, pp. 163-172.

[6] T. Olsson, M. Ericsson, and A. Wingkvist, “To automatically map source
code entities to architectural modules with naive Bayes,” Journal of
Systems and Software, vol. 183, p. 111095, 2022.

[71 Z. T. Sinkala and S. Herold, “Inmap: Automated interactive code-to-
architecture mapping recommendations,” in 2021 IEEE 18th Interna-
tional Conference on Software Architecture (ICSA), 2021, pp. 173-183.

[8] D. Link, P. Behnamghader, R. Moazeni, and B. Boehm, “Recover
and relax: Concern-oriented software architecture recovery for systems
development and maintenance,” in 2019 IEEE/ACM International Con-
ference on Software and System Processes (ICSSP), 2019, pp. 64-73.

[9] L. Erhardt and R. Koschke, “A controlled experiment on the usability

of automated reflexion mapping suggestions integrated in code cities,”

in Workshop on Software Architecture Erosion and Architectural Con-

sistency (SAEroCon), ser. ICSA 2025 Companion Proceedings, 2025.

G. Murphy and D. Notkin, “Reengineering with reflexion models: a case

study,” Computer, vol. 30, no. 8, pp. 29-36, Aug 1997.

V. Tzerpos and R. Holt, “The orphan adoption problem in architecture

maintenance,” in Proceedings of the Fourth Working Conference on

Reverse Engineering, 1997, pp. 76-82.

B. Mitchell, “A heuristic approach to solving the software clustering

problem,” in International Conference on Software Maintenance, 2003.

ICSM 2003. Proceedings., 2003, pp. 285-288.

S. M. Naim, K. Damevski, and M. S. Hossain, “Reconstructing and

evolving software architectures using a coordinated clustering frame-

work,” Automated Software Engineering, vol. 24, pp. 543-572, 2017.

A. Florean, L. Jalal, Z. T. Sinkala, and S. Herold, “A comparison of

machine learning-based text classifiers for mapping source code to ar-

chitectural modules,” in European Conference on Software Architecture,

2021.

R. Koschke and D. Simon, “Hierarchical reflexion models,” in IEEE

Working Conference on Reverse Engineering, Nov. 2003, pp. 36-45.

H. Zhang, “The optimality of naive Bayes,” in International Florida

Artificial Intelligence Research Society Conference (FLAIRS), 2004.

L. Erhardt, “Ein Vergleich von Attract-Funktionen fiir die Reflexions-

analyse hinsichtlich Struktur, Code-Termen und interaktive Nutzung,”

Master’s Thesis, Department for Mathematics and Informatics, Univer-

sity of Bremen, Germany, Aug. 2024.

[2

—

[4

=

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Ant

Commonsimaging

—8— Precision —4&— F-Score —4— MappingRate v F-Score Min A F-Score Max
—#— Recall
CountAttract(1) CountAttract(0) ADCAttract NBAttract
10 10 10
08 08 o8
A
A
06 06 06
A
A 4 A
A 04 04 A 04
A
A
02 02 r/—.—‘\l 02
00 00 00 * *
03 04 05 06 07 08 09 03 04 05 06 07 08 09 03 04 05 06 07 08 09 03 04 05 06 07 o8 09
Theta Theta Theta Theta
CountAttract(1) 10 CountAttract(0) 10 ADCAttract 10 NBAttract
A
v 08 08 08
v A
06 06 06
A
0.4 0.4 04
v
02 02 02
v
0.0 - =+ 00 003 . .
03 04 05 06 07 08 09 03 04 05 06 07 08 09 03 04 05 06 07 08 09 03 04 05 06 07 08 09
Theta Theta Theta Theta
CountAttract(1) CountAttract(0) ADCAttract NBAttract
10 10 10

JabRef

|

?Oétsl‘:

08

»>
ﬁ

>
<k >

>

°

3

Lucene

SweetHome3D

06 06 06
A A 4
A
04 04 04
‘/./":—‘
v
02 l/"/’.%. 02 02
00 ’\’\o\‘ 0 o0
03 0a 05 06 07 o8 09 03 04 05 o6 07 08 09 03 04 os 06 07 o8 09 03 0 05 06 07 o8 09
Theta Theta Theta Theta
CountAttract(1) CountAttract(0) ADCAttract NBAttract
| g ~ - 10 10
v A 4
A v
08 A 08 08
A
A v
v
06 06 06
v hd v
04 04 04
02 02 02
0.0 00 00
03 04 05 06 07 08 09 03 04 05 06 07 08 09 03 04 05 06 07 08 09 03 04 05 06 07 08 09
Theta Theta Theta Theta
CountAttract(1) CountAttract(0) ADCAttract NBAttract
10 10 =
A A
A
o8 o8
v
v
06 v v o6
v v
0ady 04
v
02 02
00 00
03 04 05 06 07 o8 09 03 04 05 o6 07 08 09 03 04 os 06 071 o8 09 03 0sa 05 06 07 o8 09
Theta Theta Theta Theta
CountAttract(1) CountAttract(0) ADCAttract NBAttract

°

TeamMates

08

q
5
o -
H 5
< »>
< »
»>

06 06
A A
A
A
04 04
A
02 02
v v
v v
00 0.0
03 04 05 06 07 08 09 03 04 05 06 07 08 09 03 04 05 06 07 08 09 03 04 05 06 07 08 09
Theta Theta Theta Theta

Fig. 3. Results of experiments

