
SEE Your Clones With Your Teammates
Rainer Koschke

University of Bremen, Germany
orcid.org/0000-0003-4094-3444

Marcel Steinbeck
University of Bremen, Germany

marcel@informatik.uni-bremen.de

Abstract—We discuss how collaborative clone analysis in
distributed teams can be supported by modern software-
visualization technology. We present our multi-user multi-
purpose software visualization platform SEE that is based on
the popular code-as-a-city metaphor. We discuss how clone data
can be visualized in SEE without compromising the other use
cases of SEE. Our design decisions are based on principles of
cognitive psychology, namely, the laws of Gestalt.

Index Terms—clone analysis, software visualization, virtual
and augmented reality, code cities, distributed development

I. INTRODUCTION

Code-Cities are a popular type of software visualization
that can be used in many different tasks in software devel-
opment [1]–[20]. They can also be used to support clone
analysis [21]. Clone management often requires the expertise
of many stakeholders: project managers, architects, developers
and others. That is, the results of clone detectors must be
assessed not only because they may contain false positives, but
also to make a decision on how to handle the found clones.
There may be code fragments that are deliberately duplicated
for technical (e.g., loop unrolling for the sake of run-time
optimization) or organizational reasons [22]. Because many
aspects play a role, the decision to remove or tolerate clones
is often a team effort. Such joint team efforts are impeded if
the team is not in the same location. Indeed there has been
a sustained trend towards distributed software development
long before the current pandemic situation [23]. No matter
whether other team members are working offshore or just in a
different office in the same building, if they are not physically
present in the same room, spatial gaps must be bridged. The
existing means to bridge these gaps in practice are chats, video
conferencing, and screen sharing, which have no particular
support for software visualization and are often cumbersome
to use. Moreover, the team generally needs to view the clones
in the overall context of a system. For instance, the refactoring
of clones in an old subsystem not changed for a long time
and soon to be replaced is hardly wanted. Modern software
visualization can assist in both aspects by providing an overall
context and enable remote collaboration.

Contributions: In this paper, we present our multi-user
multi-purpose software-visualization platform SEE (for Soft-
ware Engineering Experience) and show how it can be used
for collaborative investigation of software clones. SEE allows
multiple developers to work together on comprehending their
software in shared virtual worlds at the same time even if they
are not physically in the same place. The visualization is based

Fig. 1. Virtual room of a Code-City for subsystem Linux/Net with clone data

on the well known software-as-a-city metaphor and can be
used to depict a large set of metrics—including but not limited
to cloning, to view the implementation in the context of the
architecture [24], to trace its evolution, and to analyze run-time
behavior. That said, not only the Code-Cities can be viewed,
but all participants can also see and share the source code of
the visualized code entities. The users, represented as avatars
(cf. Figure 1), can see each other, discuss the relevance of the
clones via voice chat, and interact naturally with the Code-
City and its associated source code, where SEE makes sure
that they all have a consistent view no matter where they are
located and what kind of device they use (desktop, tablet, VR
hardware). SEE is therefore well suited to address the aspects
collaboration and overall context in clone management.

We discuss our design decisions on how to visualize code
clones using Code-Cities. Rather than most other existing
research on visualizing clone data (see Hamad et. al. [25]
for a recent comprehensive survey), our visualization is not
aimed at showing only clone data. Instead we discuss how
Code-Cities that are used for a general overview of software
already can be adapted to also show clone data, that is, how
the aspect of cloning can be integrated into these without
compromising their other purposes. These decisions are based
on the laws of Gestalt [26], which are a set of principles in
cognitive psychology accounting for how humans naturally
perceive objects as organized patterns.

Outline: The remainder of this paper is structured as
follows. Section II presents related research. Section III delves

15

2021 IEEE 15th International Workshop on Software Clones (IWSC)

978-1-6654-4287-9/21/$31.00 ©2021 IEEE
DOI 10.1109/IWSC53727.2021.00009

20
21

 IE
EE

 1
5t

h
In

te
rn

at
io

na
l W

or
ks

ho
p

on
 S

of
tw

ar
e

C
lo

ne
s (

IW
SC

) |
 9

78
-1

-6
65

4-
42

87
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IW
SC

53
72

7.
20

21
.0

00
09

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:28:45 UTC from IEEE Xplore. Restrictions apply.

into our design decisions on how to visualize clone data in
SEE. Section IV concludes.

II. RELATED RESEARCH

Our research focuses on the visualization of software and
clone data. Based on the software-as-a-city metaphor, we
develop a visualization platform with a special emphasis on
collaboration in shared virtual worlds, remotely accessible
from different hardware devices. There are therefore different
topics of related research presented in the following. For a
comprehensive recent overview on clone visualization, we
refer to Hamad et. al. [25].

A. Code-Cities

Code cities are a visual language to express quantitative—in
other words, metrics—and hierarchical properties of software
at the same time. They can be viewed as a three-dimensional
extension of Tree-maps [27], an early attempt to visualize
both kinds of properties at once. The basic idea of Tree-
maps is to recursively subdivide a rectangular shape into
smaller nested rectangles. That is, the hierarchy is expressed
by spatial inclusion. The area of the innermost rectangles
is proportional to a selected quantitative attribute—this way
expressing a metric as a proportion of the available space.
This approach turned out to be quite advantageous (as it
allows to identify atypical patterns in a spatial context) and
quickly the idea came up to visualize an additional metric by
scaling the height of the rectangles. Due to the impression
of North American downtowns with building blocks arranged
in grids, such three-dimensional Tree-maps were called Code-
Cities [28]. Researchers quickly adopted the idea of Code-
Cities and used them—and still do so—to visualize a variety of
aspects of software [1]–[20]. By mapping colors and textures
onto the surface of the three-dimensional blocks of a Code-
City, yet another metric can be visualized in an intuitive
way [16]. Code-Cities today vary also in their layout. There
are not only different variants of Tree-map layouts but also
very different hierarchical layouts used, such as rectangle or
circle packing or the EvoStreets layout [29]. In addition to the
mapping of metrics for individual elements, a visualization of
relations between elements (e.g., cloned fragments in source-
code-files) is often also required. To visualize relations, edges
are frequently used [30]. In order to diminish the visual clutter
that can occur when visualizing a lot of edges (especially when
edges are overlapping), hierarchical edge bundles, as proposed
by Holten [31], [32], have proven suitable. Code-Cities are
not just an object of research but have also arrived in practice.
Examples of use in practice include the tools by Hello2morrow
and Serene [33] as well as SonarQube’s plug-in SoftVis3D.

B. Code-Cities in 3D Environments

With advancing technical progress in the area of virtual
reality (VR), the attempt to represent Code-Cities in VR
emerged as the next step towards a visualization that engages
a larger spectrum of human perception. Considerations in
this direction were made as early as 2000 [1], [2]. Studies

outside of computer science observed that VR might be
advantageous [34]–[37] and so researchers in the area of
software visualization hoped that these observations also apply
in visual software analytics. There are a multitude of studies
with the aim of visualizing Code-Cities in pseudo 3D (desktop
computer monitors) and VR environments: [4], [9], [10], [15],
[17], [38]–[46]—to list only a few. Some studies have shown
that head-mounted displays (HMDs) may have a positive effect
on the orientation [34] and navigation speed [47] of users. That
said, there are also studies where a positive effect could not be
found [48] or where using HMDs had only little effect [49].
These conflicting results suggest that more research is needed.

C. Collaborative Software Visualization

Co-located collaborative software visualization where peo-
ple interact with each other physically in the same place was
studied by Isenberg et al. [50], [51] and Anslow et al. [52],
[53]. The authors developed a multi-touch display mounted
onto a table that can be used by several people (primarily pairs
of users) at the same time. One of the key findings of these
studies was that working face-to-face around the table (i.e.,
sharing individual findings and communicating throughout)
was a successful way for the pairs to solve complex problems,
and that collaborative software visualization should support
multiple users. An early attempt of implementing a distributed
collaborative visualization (i.e., users do not have to be physi-
cally in the same place) in the context of software comprehen-
sion can be found in the work of Kot et al. [54]. Based on the
Quake 3 game engine, the authors developed a shared three-
dimensional world where users can view, move, and arrange
source-code files interactively. Further works in the area of
collaborative software visualization are [38], [55]–[58]—in a
broader sense also [59]. Collaborative software visualization
with focus on Code-Cities in shared virtual words was recently
studied by Zirkelbach et al. [60] and Jung et al. [19]. In both
studies users were represented as abstract avatars in the virtual
world, allowing them to perceive each other and to support
their verbal communication with a simple form of gesture.
This aspect was in particular received positively in the study
by Zirkelbach et al. [60], yet, the participants would have
preferred a more realistic, human representation.

III. DESIGN DECISIONS

In this section, we will explain and justify our design
decisions on how to adapt SEE to provide clone information.
The decisions will derive from a set of principles in cognitive
psychology accounting for how humans naturally perceive
objects as organized patterns, known as the laws of Gestalt
[26]. We are using SEE for multiple purposes beyond just
showing clone data. Code-Cities are used to support architec-
ture conformance checking, debugging, performance analysis,
as well as quality assessment in general. To support all these
use cases, it is important to maintain a human beholder’s
mental map across uses cases and to provide uniform means
to visualize data. In other words, we cannot arbitrarily change
a Code-City for another use case, but need to integrate the

16

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:28:45 UTC from IEEE Xplore. Restrictions apply.

additional clone information into our existing visualization
intelligently. This goal imposes constraints that we need to
take into account in our design decisions.

We will describe those constraints first, then briefly intro-
duce the concept of Gestalt principles, and after that discuss
each principle in greater depth for Code-Cities in general and
our Code-Cities in SEE in particular.

A. Code-Cities in General

The visual language of Code-Cities in general has already
been introduced in Section II-A. The hierarchy of a program
depicted by them is often formed by syntactic nesting (e.g.,
namespaces, packages, classes, etc.), physical structures (i.e.,
files nested in directories), or class hierarchies. The leaves
of these hierarchies are generally syntactic (e.g., methods) or
physical (i.e., files) entities. They are most often represented
as blocks, such that they resemble real-world buildings in
cities, although they may also take on other shapes such
as cylinders, pyramids, etc. The kind of shape chosen may
represent the type of the entity visualized. Because nesting
is expressed by spatial inclusion, the representation of inner
nodes must be visual objects that can contain other visual
objects. The exact type of shape for inner nodes depends partly
on the automated layout. In the original Tree-maps, rectangles
were used. Circle packing and balloon layouts suggest to use
circles. The EvoStreets use streets to depict inner nodes. All of
these are essentially two-dimensional because their contained
objects should be seen, but there are also Code-City variants
where inner nodes have a three-dimensional shape such as a
transparent half sphere [61]. Relations among these entities
are visualized as edges—often hierarchically bundled.

B. Code-Cities in SEE

SEE (Software Engineering Experience) is a multi-user
multi-purpose software visualization platform built upon the
Unity game engine. The underlying data model visualized by
SEE is a hierarchical graph with attributed nodes and edges—
hierarchical means that nodes can be nested. SEE does not
make any assumptions about what nodes, edges, and attributes
represent and thus could be used to visualize anything that can
be encoded as hierarchical graph.

Graphs can be imported from GXL files, a standard file
format for exchanging arbitrary graphs that is used both in
academia and industry [62]. The nodes and edges of an
imported graph are visualized as three-dimensional blocks
(leaf nodes), two-dimensional surfaces enclosing blocks (inner
nodes), and splines connecting blocks or surfaces (edges)
that can be hierarchically bundled. The visual facets of the
blocks (width, height, depth, and color), surfaces (shape and
color), and splines (thickness, color gradient, and bundling
strategy) can be freely configured based on the node and
edge attributes. Using one of the built-in layout engines,
blocks (and thus implicitly also surfaces and splines) can
be arranged automatically. At the moment of writing, SEE
supports Circular Balloon, Circle Packing, Rectangle Packing,
Tree-map, and EvoStreets layouts.

Our envisioned users are software architects, project man-
agers, and developers who need to assess the software archi-
tecture or internal code quality, find performance bottlenecks
or debug a program as a team. They can enter a virtual room—
in which they can interact with Code-Cities—remotely using
different types of devices, namely, regular desktop computers
with 2D monitor, keyboard, and mouse, tablets with pens,
as well as VR hardware connected over the Internet. We are
currently also working on supporting AR devices. The users
can see each others as avatars and communicate via voice chat.

The different use cases, in which those team members meet,
are all supported by the same uniform means of Code-Cities.
It is important that a Code-City does not change radically
from use case to use case so as to maintain the beholders’
mental maps. That means if the users have decided to let a
particular metric determine the height of a block, for instance,
the same metric should determine this visual attribute across
all use cases. This need for consistency limits the degree of
freedom we have to integrate additional clone data. Moreover,
the input graphs in SEE typically model higher-level imple-
mentation (e.g., methods, classes, packages) or architectural
concepts (e.g., layers and components) and their relations. This
underlying logical data model and its mapping onto visual
objects should neither change from use case to use case. A
Code-City must capture the same kind of graph in a consistent
way across all use cases. That is, clone information must be
superimposed on an existing visualization of this graph.

C. Principles of Gestalt

In 1923, Wertheimer postulated six principles on how
humans group together single visual or acoustic items [26].
These principles hold independently of cultural and even
interpersonal differences [63]. This set was later extended by
other researchers. While Wertheimer originally used the terms
principles and factors to describe them, they are now often
referred to as the laws of Gestalt (Gestalt is the German
word for shape, figure, form, or outline but also exposure and
effect), although the term laws is rather overstretching their
significance. Among other aspects of cognitive psychology,
these principles should be taken into account when designing
human-computer interfaces. For instance, MacNamara has ex-
plored the effect of the Gestalt principles in VR [63], but only
for 2D GUI panels, not for true 3D objects. It is worthwhile to
consider and evaluate them also in metaphoric visualizations
such as Code-Cities. Code-Cities aim at supporting visual
analytics which leverages human visual perception and pattern
detection to facilitate reasoning. Consequently, the principles
of Gestalt need to be kept in mind when devising the details of
visualizaton to foster this visual reasoning and to avoid false
conclusions due to misconception.

In the following, we describe the original principles by
Wertheimer and additional ones observed by other researchers
relevant to our context and relate their relevance specifically
to Code-Cities. Each principle is discussed in more detail
by (1) a brief description, (2) discussion of its relevance for

17

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:28:45 UTC from IEEE Xplore. Restrictions apply.

Code-Cities in general, and then (3) justification of our design
decisions on how to integrate clone data in SEE.

D. Principle of Similarity

Clones are similar code entities, thus, it is the obvious thing
to visualize them as similar objects. In fact, the principle of
similarity suggests just that. It states that similar things tend
to appear grouped together. Leaf entities in the code hierarchy
are typically represented by a solid mesh in Code-Cities.
Those meshes could be formed according to the code of these
entities. If two code entities have similar code, they would
have similar meshes. Alternatively, other visual attributes of
the representation of leaves in the code hierarchy such as
size, color, or texture could be used to let them look alike.
The similarity of inner nodes is more difficult to achieve if
they are just two-dimensional containers such as rectangles
or circles. They will at least have a line with a color and
a texture that may highlight their similarity. Yet, since the
reason for their similarity is normally the similarity of their
contained elements, the similarity in representation of these
will also implicitly suggest the similarity of the inner nodes
themselves. This can be further emphasized if the positions
of the inner elements are aligned alike such that similar inner
elements are at similar relative positions within their container.

In SEE, the user can select the type of shape for inner
nodes and leaves of the node hierarchy so the mesh of objects
is already fixed. Yet, because leaf nodes are blocks in SEE
we can use their sides to show their similarity. Drawing on
the idea of SeeSoft [64], we suggest to put the shape of the
code (possibly pretty printed to abstract from differences in
code layout) implementing an entity depicted as block on each
side. After all, it is the similarity of the code that makes them
clones (unless they are type-4 clones). In other words, we
downscale the code such that it fits into the available area of
each side. Only the sides of a block are “imprinted”, but the
block remains a block. Obviously, this idea has its limitations
for small objects with a lot of code such that the shape of the
code on the block’s size cannot be deciphered. Even though
SEE supports zooming to increase focused objects, zooming
can solve this problem at most partially because the “bigger
picture” is lost in zooming.

Likewise to the shape of objects, the user selects which
metrics determine the height, width, and depth of the objects
for leaf nodes. If they were changed just to show other
information on clones, the dimensions of the nodes may
change radically, which may effect spatial relations because
objects becoming larger must receive more space as overlap
must be avoided. Significantly sized objects (e.g., tall blocks or
large flat areas) serve as a landmark and if their sizes change
so that they can no longer be recognized, a beholder may
become disoriented. If, however, similar code entities (i.e.,
clones) have similar values for the metrics chosen to determine
the dimensions, they will also look similar. For these reasons,
the metrics determining the dimensions of the blocks should
not be changed just to show clone information.

Changes in color are less invasive and that is why many
researchers using Code-Cities adjust colors to convey more
flexible information. For the same reasons, colors are often
chosen differently in cartography to highlight different aspects
while the size and positions of objects on a map are main-
tained. So it would be acceptable to let color express clone-
specific information such as the clone rate if a Code-City in
SEE is to be used to assess cloning of a program.

We refrain from changing the positions of the objects just
to align nested similar elements to make the similarity of
their container elements more obvious as this would make a
previous mental imprint of the spatial relations useless. As we
will discuss in Section III-E, we can use edges to align similar
leaves instead, which also helps to identify similar inner nodes.

E. Principle of Uniform Connectedness

The principle of uniform connectedness states that elements
that are connected to each other by uniform visual properties
such as colors, lines, frames, or shapes are perceived as a
single unit when compared with other elements not connected
in the same manner. Frames are the typical means to visualize
inner nodes, that is, containers of other elements. It is also
common to visualize relations as lines (i.e., edges) conntecting
the related elements [30]. The problem with lines is that they
may cross other lines or objects and if there are too many of
them, they create visual clutter. Instead of explicitly connecting
the related elements with lines, one can also use colors. For
instance, Yoshimura et al. color similar files (represented as
dots) together forming a clone class by the same color rather
than connecting them by lines [65]. However, there is only
a limited number of colors humans are able to distinguish
and the same entity may even be contained in different clone
classes so that it would need to have multiple colors.

In SEE, we use edges—drawn as splines—to model code
entities sharing similar code, where edges can be bundled to
remove some of the visual clutter. The thickness of the splines
can depict a clone metric such as the size of shared code as
proposed originally by Rieger et al. [66]. The use of edges
to model and visualize relations is consistent with the use of
splines to show other code dependencies in SEE and the spline
color is reserved for the edge type. Edges can be hidden by
users on demand (e.g., by selection or by edge type) to get a
better view.

F. Principle of Common Fate

The principle of common fate states that humans tend to
perceive items moving in the same direction as being more
related than items that move in different directions or are
stationary. For instance, SEE animates the version history. All
entities deleted from one revision to the next one, sink to the
ground and fade out, whereas all new entities fade in and raise
up. Yet, this principle has relevance not only for animations
but also for hierarchical edge bundling in Code-Cities. Here,
all splines for edges staying in the same subtree of the node
hierarchy are routed through a unique control point related to
this subtree (technically, the nearest common ancestor of the

18

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:28:45 UTC from IEEE Xplore. Restrictions apply.

source and target of an edge in the node hierarchy); this way,
they take on the same fate of a shared static route.

G. Principle of Proximity

According to the principle of proximity, objects that are
closer together appear to be more related than objects that
are spaced farther apart. Where objects are placed in Code-
Cities is generally decided by an automated layout algorithm,
whose optimization criteria differ based on the nature of the
layout (e.g., Tree-maps optimize the use of space) but gen-
erally do not include semantic relatedness. Yet, this principle
suggests to put related entities closer together and to spread
unrelated entities. If edges are used to describe relations,
force-directed layouts can be used to group related objects
together visually. For instance, Yoshimura et al. use a force-
directed layout algorithm to cluster similar files [65]. We
note, however, that force-directed layouts can take only those
relations into account that are explicitly represented as edges
and in general, there are many different kinds of relations
beyond just clone relations. Moreover, Code-Cities express
the hierarchy as spatial inclusion which puts an additional
constraint on the automatic layouts not to move the objects
arbitrarily: they must remain in their container.

SEE offers multiple hierarchical layouts including a force-
directed layout, which can take into account clone relations—
yet, these are generally not the only type of edge in the under-
lying dependency graph as SEE supports multiple use cases.
Moreover, users are allowed to move objects around. This way
even semantic relations not modelled explicitly as edges can
be accommodated. Once the positions are determined, they
should not change just because the Code-City is used in a
different use case, in particular, if the users have arranged the
objects. For these reasons, proximity is not used in SEE to
show clone information specifically.

H. Principle of Common Region

The principle of common region states that objects located
in the same closed region are perceived as belonging together.
It is similar to the principle of proximity, but here an ex-
plicit rendering of a region, e.g., a line enclosing objects,
is suggesting grouping; not all objects in such a region are
necessarily very close to each other. This principle is leveraged
by most Code-Cities; they generally have an explicit rendering
of regions by enclosing lines or colored planes representing
inner nodes of the node hierarchy. EvoStreets have a more
distinct approach to show inner nodes. Here the contained
objects are not visually nested in their container, but the
containers are drawn as bars in analogy to streets at which
the leaves are lined up as buildings and nested inner nodes
are drawn as orthogonal side streets. At the center is the street
representing the root of the node hierarchy. The width of the
streets decreases along with their level in the node hierarchy.
Even though the original inventors of the EvoStreets layout
[29] have not done that, all nodes with the same parent in the
node hierarchy could be easily enclosed by a rectangular line
because the branches of the node hierarchy projected onto the

plane do not overlap (unless they are nested in each other, in
which case they are fully contained) [18], [67], [68].

SEE includes different layouts with explicit regions, but also
EvoStreets in their original form. As noted in Section III-B, the
node hierarchy in SEE is given by the underlying hierarchical
dependency graph, so common explicit regions are used solely
to express the node hierarchy, not any clone information.
For the same reasons already discussed in Section III-D,
we refrain from changing existing regions for the purpose
of just highlighting clones. One could still render regions
superimposed on the existing layout chosen as suggested by
Byelas and Telea in form of their so called areas of interest
[69]. This idea could be used for leveraging the principle of
common region, for instance, for showing all objects together
forming a clone class—at least if there are not too many such
clone classes.

I. Principle of Prägnanz

The principle of prägnanz (also sometimes referred to as
the principle of good figure or the principle of simplicity; the
German word prägnanz means brief, precise, and accurate)
asserts that a set of ambiguous or complex objects is inter-
preted in the simplest way. For instance, when we look at the
Olympic logo with its six rings, we see overlapping circles
rather than an assortment of curved, connected lines. To avoid
misinterpretations because a human beholder falsely follows
this principle, most Code-Cities, including those in SEE, use
simple shapes such cuboids or cylinders to visualize leaf
nodes and rectangles or circles for inner nodes—which can
be considered prägnant—and they are placed with sufficient
space in between to avoid any overlap. SEE uses the game
engine Unity, which offers—as many other game engines—
a rendering mechanism called level of detail (LOD), which
allows to draw different variants of the same object depending
upon how much space the objects occupies in the visible area.
That is, when an object is small because it is soon from afar,
a simplified (i.e., a more abstract) shape can be used. If it is
viewed closely and occupies a larger area, additional details
can be rendered. SEE uses this mechanism to show additional
decorations, which could also be used to fade in clone data,
e.g., the miniaturized code put on the sides of a cuboid as
discussed in Section III-D.

J. Principle of Continuity

The principle of continuity predicts points that are connected
by lines are seen in a way that follows the smoothest path, that
is, are continued in their established direction. This principle
is particularly relevant for drawing edges. Suppose a cross of
lines in angles of 90 degrees can be seen. This shape can be
explained by two straight edges crossing each other on their
half way or as two bending edges in an orthogonal edge layout
whose way points happen to be at the same point in space. The
principle of continuity would predict that this situation will
be interpreted in the former way because the lines continue in
their established direction.

19

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:28:45 UTC from IEEE Xplore. Restrictions apply.

Although edge crossing can be fully avoided in the 3D space
used for Code-Cities, there may still be perspectives in which
this situation could occur. Only if the beholder moved around,
she or he would be able to disambiguate the scenery. The risk
of misunderstandings of this kind is somewhat mitigated in
SEE by the hierarchical bundling, which leads edges through
different layers of height. Moreover, SEE colors the edges
based on a color gradient from their source to their target.
Colors have a base color that represents the type of the edge,
but they are actually rendered from a lighter version of this
base color to a darker version in the direction of the edge.
When two edges meet, the additional color information may
help to interpret the situation correctly. This may work even
if the edges have the same type because depending on the
proportion where they meet, they may have a different range
of the color gradient at the area where they cross. Yet, if two
edges of they same type meet both half ways, the situation
is still ambiguous. However, because we use splines, which
do not have sudden changes of their direction, the principle
of continuity generally yields the accurate interpretation. If in
doubt, the user can select an edge to highlight it so that it can
be clearly distinguished from other edges.

IV. CONCLUSIONS

In this paper, we have described our software visualization
platform SEE and how it can be used to support remote
collaborative clone analysis in distributed teams. We explained
our most important design decisions for the visualization with
Code-Cities based on the laws of Gestalt. Our discussion
emphasizes the relevance of these universal principles for
this approach of software visualization. We elaborated how
those principles are already leveraged by Code-Cities both
in SEE and in general and what other opportunities exist on
how Code-Cities could be even better perceived by human
beholders. Ultimately, all design decision are trade-offs be-
tween multiple partly conflicting requirements. In our case,
most of them are due to our attempt to use Code-Cities
consistently for multiple use cases. That is why we cannot
follow all principles of Gestalt, yet we discussed how clone
data can nevertheless be visualized effectively by falling back
on alternatives principles of Gestalt. As a next step, we plan
to evaluate our design decisions empirically.

REFERENCES

[1] C. Knight and M. Munro, “Virtual but visible software,” in International
Conference on Information Visualization. IEEE, 2000, pp. 198–205.

[2] S. M. Charters, C. Knight, N. Thomas, and M. Munro, “Visualisation for
informed decision making; from code to components,” in International
Conference on Software Engineering and Knowledge Engineering, 2002,
pp. 765–772.

[3] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz, “Software land-
scapes: Visualizing the structure of large software systems,” in IEEE
TCVG Symposium on Visualization, 01 2004, pp. 261–266.

[4] T. Panas, R. Berrigan, and J. Grundy, “A 3d metaphor for software
production visualization,” in International Conference on Information
Visualization. IEEE, 2003, pp. 314–319.

[5] A. Marcus, L. Feng, and J. I. Maletic, “3D representations for software
visualization,” in ACM International Symposium on Software Visualiza-
tion, 2003, pp. 27–36.

[6] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
IEEE International Workshop on Visualizing Software for Understanding
and Analysis, June 2007, pp. 92–99.

[7] ——, “Codecity: 3d visualization of large-scale software,” in Companion
of the 30th International Conference on Software Engineering. ACM,
2008, pp. 921–922.

[8] ——, “Visual exploration of large-scale system evolution,” in IEEE
Working Conference on Reverse Engineering, Oct 2008, pp. 219–228.

[9] F. Fittkau, S. Roth, and W. Hasselbring, “ExplorViz: visual runtime
behavior analysis of enterprise application landscapes,” in European
Conference on Information Systems, 2015, pp. 1–13.

[10] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring software cities in
virtual reality,” in IEEE Working Conference on Software Visualization,
2015, pp. 130–134.

[11] G. o. Balogh, A. Szabolics, and A. Beszédes, “Codemetropolis: Eclipse
over the city of source code,” in IEEE International Working Conference
on Source Code Analysis and Manipulation, Sep. 2015, pp. 271–276.

[12] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “Cityvr: Gameful
software visualization,” in IEEE International Conference on Software
Maintenance and Evolution (TD Track), 2017, pp. 633–637.

[13] L. Merino, A. Bergel, and O. Nierstrasz, “Overcoming issues of 3d
software visualization through immersive augmented reality,” in IEEE
Working Conference on Software Visualization, 2018, pp. 54–64.

[14] W. Scheibel, C. Weyand, and J. Döllner, “Evocells - A treemap layout
algorithm for evolving tree data,” in International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications, 2018, pp. 273–280.

[15] L. Merino, M. Hess, A. Bergel, O. Nierstrasz, and D. Weiskopf, “Perfvis:
Pervasive visualization in immersive augmented reality for performance
awareness,” in ACM/SPEC International Conference on Performance
Engineering, 2019, pp. 13–16.

[16] D. Limberger, W. Scheibel, J. Döllner, and M. Trapp, “Advanced
visual metaphors and techniques for software maps,” in International
Symposium on Visual Information Communication and Interaction, Sep.
2019, pp. 1–8.

[17] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, and M. Misiak,
“Visualization of software architectures in virtual reality and augmented
reality,” IEEE Aerospace Conference, pp. 1–12, 2019.

[18] M. Steinbeck, R. Koschke, and M.-O. Rüdel, “How EvoStreets are
observed in three-dimensional and virtual reality environments,” in
IEEE International Conference on Software Analysis, Evolution and
Reengineering, 2020, pp. 332–343.

[19] F. Jung, V. Dashuber, and M. Philippsen, “Towards collaborative and dy-
namic software visualization in vr,” in Proceedings of the International
Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 3: IVAPP, INSTICC. SciTePress,
2020, pp. 149–156.

[20] V. Dashuber, M. Philippsen, and J. Weigend, “A layered software
city for dependency visualization,” in International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications, vol. 3. SciTePress, 2021, pp. 15–26.

[21] M. Rüdel, J. Ganser, and R. Koschke, “A controlled experiment on
spatial orientation in VR-based software cities,” in IEEE Working
Conference on Software Visualization, Sep. 2018, pp. 21–31.

[22] J. R. Cordy, “Comprehending reality-practical barriers to industrial adop-
tion of software maintenance automation,” in International Conference
on Program Comprehension. IEEE, 2003, pp. 196–205.

[23] C. Ebert, M. Kuhrmann, and R. Prikladnicki, “Global software engi-
neering: evolution and trends,” in International Conference on Global
Software Engineering, 2016, pp. 144–153.

[24] R. Koschke and M. Steinbeck, “Modeling, visualizing, and checking
software architectures collaboratively in shared virtual worlds,” in Work-
shop on Software Architecture and Architectural Consistency, 2021,
submitted for publication.

[25] M. Hammad, H. A. Basit, S. Jarzabek, and R. Koschke, “A
systematic mapping study of clone visualization,” Computer Science
Review, vol. 37, p. 100266, 2020. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1574013719302679

[26] M. Wertheimer, Festschrift für Carl Stumpf, ser. Psychologische
Forschung; Zeitschrift für Psychologie und ihre Grenzwissenschaften.
Verlag von Julius Springer, 1923, vol. 4, ch. Untersuchungen zur Lehre
von der Gestalt, pp. 301–350.

[27] B. Johnson and B. Shneiderman, “Tree-maps: A space-filling approach
to the visualization of hierarchical information structures,” in Proceed-

20

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:28:45 UTC from IEEE Xplore. Restrictions apply.

ings of the Conference on Visualization. IEEE Computer Society Press,
1991, pp. 284–291.

[28] K. Andrews, J. Wolte, and M. Pichler, “Information pyramids: A new
approach to visualising large hierarchies,” in IEEE Conference on
Visualization, 1997, pp. 49–52.

[29] F. Steinbrückner and C. Lewerentz, “Representing development history
in software cities,” in ACM International Symposium on Software
Visualization. ACM, 2010, pp. 193–202.

[30] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal on Software
Maintenance and Evolution, vol. 15, no. 2, pp. 87–109, 2003.

[31] D. H. R. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, Sep. 2006.

[32] ——, “Visualization of graphs and trees for software analysis,” Ph.D.
dissertation, Technical University of Delft, 2009.

[33] J. Bohnet, “Visualization of execution traces and its application to
software maintenance,” Dissertation, Hasso-Plattner-Institut, Universität
Potsdam, Oct. 2010.

[34] S. S. Chance, F. Gaunet, A. C. Beall, and J. M. Loomis, “Locomotion
mode affects the updating of objects encountered during travel: The
contribution of vestibular and proprioceptive inputs to path integration,”
Presence: Teleoper. Virtual Environ., vol. 7, no. 2, pp. 168–178, 1998.

[35] D. A. Bowman, E. T. Davis, L. F. Hodges, and A. N. Badre, “Main-
taining spatial orientation during travel in an immersive virtual environ-
ment,” Presence: Teleoper. Virtual Environ., vol. 8, no. 6, pp. 618–631,
1999.

[36] B. E. Riecke, D. W. Cunningham, and H. H. Bülthoff, “Spatial updating
in virtual reality: the sufficiency of visual information,” Psychological
Research, vol. 71, no. 3, pp. 298–313, May 2007.

[37] J. W. Regian, W. L. Shebilske, and J. M. Monk, “Virtual reality: An in-
structional medium for visual-spatial tasks,” Journal of Communication,
vol. 42, no. 4, pp. 136–149, 1992.

[38] J. I. Maletic, J. Leigh, A. Marcus, and G. Dunlap, “Visualizing object-
oriented software in virtual reality,” in International Workshop on
Program Comprehension, May 2001, pp. 26–35.

[39] J. Waller, C. Wulf, F. Fittkau, P. Döhring, and W. Hasselbring, “Syn-
chrovis: 3d visualization of monitoring traces in the city metaphor
for analyzing concurrency,” in IEEE Working Conference on Software
Visualization, 2013, pp. 1–4.

[40] N. Capece, U. Erra, S. Romano, and G. Scanniello, “Visualising a
software system as a city through virtual reality,” in Augmented Reality,
Virtual Reality, and Computer Graphics, L. T. De Paolis, P. Bourdot,
and A. Mongelli, Eds. Cham: Springer International Publishing, 2017,
pp. 319–327.

[41] K. Ogami, R. G. Kula, H. Hata, T. Ishio, and K. Matsumoto, “Using
high-rising cities to visualize performance in real-time,” in Software
Visualization (VISSOFT), 2017 IEEE Working Conference on. IEEE,
2017, pp. 33–42.

[42] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc,
“Communicating software architecture using a unified single-view visu-
alization,” in IEEE International Conference on Engineering Complex
Computer Systems. IEEE, 2007, pp. 217–228.

[43] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner, and J. Laviola, “Code
park: A new 3d code visualization tool,” in IEEE Working Conference
on Software Visualization. IEEE, 2017, pp. 43–53.

[44] L. Merino, J. Fuchs, M. Blumenschein, C. Anslow, M. Ghafari, O. Nier-
strasz, M. Behrisch, and D. A. Keim, “On the impact of the medium
in the effectiveness of 3d software visualizations,” in IEEE Working
Conference on Software Visualization. IEEE, 2017, pp. 11–21.

[45] A. Schreiber and M. Brüggemann, “Interactive visualization of software
components with virtual reality headsets,” in IEEE Working Conference
on Software Visualization. IEEE, 2017, pp. 119–123.

[46] F. Fernandes, C. S. Rodrigues, and C. Werner, “Dynamic analysis of
software systems through virtual reality,” in Symposium on Virtual and
Augmented Reality, Nov. 2017, pp. 331–340, in Spanish.

[47] R. A. Ruddle, S. J. Payne, and D. M. Jones, “Navigating large-
scale virtual environments: what differences occur between helmet-
mounted and desk-top displays?” Presence: Teleoperators & Virtual
Environments, vol. 8, no. 2, pp. 157–168, 1999.

[48] B. Sousa Santos, P. Dias, A. Pimentel, J.-W. Baggerman, C. Ferreira,
S. Silva, and J. Madeira, “Head-mounted display versus desktop for
3d navigation in virtual reality: A user study,” Multimedia Tools and
Applications, vol. 41, no. 1, pp. 161–181, Jan. 2009.

[49] R. A. Ruddle and P. Péruch, “Effects of proprioceptive feedback and en-
vironmental characteristics on spatial learning in virtual environments,”
International Journal of Human-Computer Studies, vol. 60, no. 3, pp.
299–326, 2004.

[50] P. Isenberg, D. Fisher, M. R. Morris, K. Inkpen Quinn, and M. Czerwin-
ski, “An exploratory study of co-located collaborative visual analytics
around a tabletop display,” IEEE Symposium on Visual Analytics Science
and Technology, pp. 179–186, 2010.

[51] P. Isenberg, D. Fisher, S. A. Paul, M. R. Morris, K. Inkpen, and
M. Czerwinski, “Co-located collaborative visual analytics around a
tabletop display,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 5, pp. 689–702, 2012.

[52] C. Anslow, S. Marshall, J. Noble, and R. Biddle, “Sourcevis: Collab-
orative software visualization for co-located environments,” in IEEE
Working Conference on Software Visualization, Sep. 2013, pp. 1–10.

[53] C. Anslow, “Reflections on collaborative software visualization in co-
located environments,” in IEEE International Conference on Software
Maintenance and Evolution, 2014, pp. 645–650.

[54] B. Kot, B. Wuensche, J. Grundy, and J. Hosking, “Information vi-
sualisation utilising 3d computer game engines case study: A source
code comprehension tool,” in ACM SIGCHI New Zealand Chapter’s
International Conference on Computer-Human Interaction: Making CHI
Natural, 2005, pp. 53–60.

[55] M. D’Ambros and M. Lanza, “A flexible framework to support collabo-
rative software evolution analysis,” in European Conference on Software
Maintenance and Reengineering, 2008, pp. 3–12.

[56] M. D’Ambros and M. Lanza, “Distributed and collaborative software
evolution analysis with Churrasco,” Science of Computer Programming,
vol. 75, no. 4, pp. 276–287, 2010.

[57] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc,
“Communicating software architecture using a unified single-view visu-
alization,” in IEEE International Conference on Engineering Complex
Computer Systems, 2007, pp. 217–228.

[58] M. Ferenc, I. Polasek, and J. Vincur, “Collaborative modeling and
visualization of software systems using multidimensional UML,” in
IEEE Working Conference on Software Visualization, 2017, pp. 99–103.

[59] E. Stroulia, I. Matichuk, F. Rocha, and K. Bauer, “Interactive exploration
of collaborative software-development data,” in IEEE International
Conference on Software Maintenance, 2013, pp. 504–507.

[60] C. Zirkelbach, A. Krause, and W. Hasselbring, “Hands-on: Experiencing
software architecture in virtual reality,” Christian-Albrechts-Universität
zu Kiel, Research Report 1809, Jan. 2019.

[61] R. Oberhauser, “VR-UML: The unified modeling language in virtual
reality – an immersive modeling experience,” in Business Modeling
and Software Design, B. Shishkov, Ed. Cham: Springer International
Publishing, 2021, pp. 40–58.

[62] R. Holt, A. Winter, and A. Schürr, “GXL: toward a standard exchange
format,” in IEEE Working Conference on Reverse Engineering, 2000,
pp. 162–171.

[63] W. MacNamara, “Evaluating the effectiveness of the gestalt principles of
perceptual observation for virtual reality user interface design,” Master’s
thesis, Technological University Dublin, 2017.

[64] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr, “Seesoft—a tool
for visualizing line oriented software statistics,” IEEE Transactions on
Software Engineering, vol. 18, no. 11, pp. 957–968, 1992.

[65] K. Yoshimura and R. Mibe, “Visualizing code clone outbreak: An
industrial case study,” in International Workshop on Software Clones.
IEEE, 2012, pp. 96–97.

[66] M. Rieger, S. Ducasse, and M. Lanza, “Insights into system-wide code
duplication,” in IEEE Working Conference on Reverse Engineering,
2004, pp. 100–109.

[67] M. Steinbeck, R. Koschke, and M.-O. Rüdel, “Comparing the EvoStreet
visualization technique in two- and three-dimensional environments—
a controlled experiment,” in International Conference on Program
Comprehension, 2019, pp. 231–242.

[68] ——, “Movement patterns and trajectories in three-dimensional software
visualization,” in IEEE International Working Conference on Source
Code Analysis and Manipulation, Sep. 2019, pp. 163–174.

[69] H. Byelas and A. Telea, “Visualization of areas of interest in software
architecture diagrams,” in ACM Symposium on Software Visualization,
2006, pp. 105–114.

21

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:28:45 UTC from IEEE Xplore. Restrictions apply.

