
City of Clones

Rainer Koschke
University of Bremen, Germany

orcid.org/0000-0003-4094-3444

Marcel Steinbeck
University of Bremen, Germany

marcel@informatik.uni-bremen.de

Abstract—Code Cities are used to visualize various aspects of
software in 3D including clone information. Software entities such
as methods or classes are often depicted by simple regular shapes,
for instance, rectangular cuboids or cylinders, where different
code metrics can be used to determine their height, width, and
depth. Clone information is often represented by coloring or
by edges connecting similar code entities. Because Code Cities
may be used for purposes other than showing clone relations,
the metrics for height, width, depth, and color of a shape may
already be used for information not related to cloning and if so,
cannot simply be re-assigned differently because that would lead
to drastic changes in the visualization causing disorientation of
human beholders.

As an alternative, we propose to use the shape of the code
entities to express their similarity. In this paper, we will discuss
four ways to generate similar shapes for similar code entities and
investigate whether dissimilar code entities have dissimilar shapes,
too, to prevent false visual impressions. These approaches might
even enable visual clone detection where clones are immediately
recognizable by a human beholder not requiring a clone detector.

Index Terms—software visualization, code cities, code clones

I. INTRODUCTION

To assist developers in the detection, prevention, and

elimination of cloned code, a variety of tools have been

developed in the last years. However, the number of clones

within a software is typically many times higher than what

developers can mentally grasp, making it necessary to present

findings in a structured way. Tables are a simple, yet effective

option to accomplish this. That said, tables do not take full

advantage of the human visual perception. Based on the

research field of information visualization, a wide range of

techniques to visualize software and the clones contained

therein were proposed [1]. These techniques, unlike tabular

visualizations, allow humans to quickly get an overview of the

characteristics of a software and to identify atypical patterns.

A software visualization technique that has gained popularity

a long time ago and which is still subject to current research

is the Code City visualization [2]–[4]. The underlying data

for Code Cities are typically hierarchical graphs consisting of

nodes and edges. A hierarchical graph is one in which nodes

can be decomposed into subnodes forming a tree hierarchy.

Nodes in Code Cities are depicted as three-dimensional objects

where leaf nodes in the hierarchy are often rendered as simple

uniform shapes such as blocks or cylinders and inner nodes as

circles or rectangles spatially enclosing their descendants.

To express relational data, edges visually connect related

nodes. In the context of clone analysis, edges are often used to

emphasize the fact that two source-code entities (represented as

nodes) share cloned fragments. While edges are well suited to

depict cloning, they can also be used to express other kinds of

relations, such as, for example, import dependencies. If multiple

relations must be visualized at once, the kind of relation can be

encoded using colors. However, the number of colors humans

can easily distinguish is limited. Moreover, too many edges

create visual clutter even if they are bundled [5]. Last but not

least, it may not be intuitive that two code entities that are not

clones look alike if all nodes have the same uniform shape. If

two code entities that are not clones had very different shapes,

but two cloned entities a very similar shape, a human beholder

of a Code City could detect clones by just looking at those. A

clone detector needed to create the data required to add edges

connecting clones may not even be needed then.

Contributions: In this paper we study alternative visual-

izations of cloning in Code Cities by providing more distinct

individual shapes for code entities. The goal is to create similar

shapes for clones, but different shapes for entities that are not

clones. We experiment with three approaches to create more

distinct kinds of shapes and one approach selecting textures

imposed on a standard block shape. All these approaches

generate their visualizations automatically based on metrics

related to similarity of code entities. This paper is intended

to present early ideas and initial results. The study is still

explorative and preliminary, a more thorough evaluation is

required in the future.

Outline: The next section discusses related research on

Code Cities. Section III presents the four different alternative

visualization techniques for leaf nodes and Section IV presents

and discusses these in the light of examples. Section V

concludes.

II. RELATED RESEARCH

This paper focuses on the visualization of code clones in soft-

ware systems using Code Cities. For a comprehensive overview

on clone visualization in general, we refer the interested reader

to the work of Hamad et. al. [1]. In the following, we present

related research on the topic of Code Cities.

In their simplest form, Code Cities are an extension of Tree-
maps [6] in 3D space, which, in turn, are an early attempt

to express quantitative data (i.e., metrics) over a hierarchy.

With Tree-maps, a hierarchy (whatever it is composed of)

is depicted by recursively subdividing a planar shape (e.g.,

a rectangle) into smaller nested planar shapes—that is, the

hierarchy is expressed by spatial inclusion. The area of the

55

2022 IEEE 16th International Workshop on Software Clones (IWSC)

2572-6587/22/$31.00 ©2022 IEEE
DOI 10.1109/IWSC55060.2022.00018

20
22

 IE
EE

 1
6t

h
In

te
rn

at
io

na
l W

or
ks

ho
p

on
 S

of
tw

ar
e

C
lo

ne
s (

IW
SC

) |
 9

78
-1

-6
65

4-
84

47
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IW
SC

55
06

0.
20

22
.0

00
18

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:25:20 UTC from IEEE Xplore. Restrictions apply.

innermost shapes corresponds to a certain metric (e.g., lines

of code, complexity, etc. for software), expressing the metric

as a proportion of the available space. This approach allows

humans to easily identify atypical patterns in a special context,

and so it is not surprising that quickly the idea came up

to express an additional metric by mapping its value to the

height of the shapes. If the underlying shape is a rectangle,

resulting in cuboids in 3D space (which is generally the most

commonly used shape), the obtained visualization reminds of

North American downtowns with buildings arranged in grids of

blocks. Accordingly, such three-dimensional Tree-maps were

called Code Cities [7]. Researchers quickly adopted the idea

of Code Cities and have been using them to visualize a variety

of aspects of software [2]–[4], [8]–[15].

In addition to the geometric extensions (width, height, and

depth) of the buildings of a Code City, colors can be used

to express yet another metric by mapping the metric values

to color gradients (e.g., from green to red) and applying the

gradients on the surface of the buildings [13]. Sizing and

coloring the representation of the elements of a software to be

visualized is well suited to express several metrics—up to four—

for individual elements at once. However, relations between

elements (e.g., include dependencies) cannot be represented

appropriately by these means. To depict relations, edges

connecting the related elements are therefore often used [16].

To diminish the visual clutter that can occur when visualizing

a lot of (overlapping) edges, hierarchical edge bundles have

proven themselves suitable [5].

As already mentioned, Code Cities, in their simplest form, are

Tree-maps in 3D space. That said, Code Cities today vary also

in their layout. Examples for other Code City layouts include

EvoStreets (a layout with a special emphasis on the visualization

of software evolution) [17], Circular Balloon (a layout which,

due to the more generous use of space, makes it easier to grasp

the hierarchical structure of the visualized elements) [18], and

Circle Packing [18] or Rectangular Packing [3]—two layouts

where the hierarchy is expressed by nested circles or rectangles,

respectively.

III. VISUAL DESIGN

This sections introduces the different types of shapes and

textures to represent leaves of a hierarchical dependency graph

represented as Code City. The goal is to generate similar

shapes and textures for similar code entities that are leaves in

the hierarchy, but distinct shapes and textures for code entities

that are not clones of each other. The primary goal is to meet

a human beholder’s intuitive expectation that visual similiarity

suggests relatedness. This expectation is expressed in one of

the laws of Gestalt, namely, the principle of similarity. This

principle states that humans group things together if they appear

to be similar to each other [19].

A secondary goal may be to even enable a “visual clone

detection”, where a human beholder may spot clones without

the necessity for a clone-detection tool. We note, however,

that this goal is really secondary as clone-detector tools are

available, fast, mostly accurate, and may find clones at a lower

granularity that is depicted in a Code City (generally, methods

or classes are visualized, while many clone detectors find nested

cloned code fragments at the statement level [20]).

As presented in Section II, the dimensions and color of

shapes for leaves are determined by metrics in Code Cities,

but the shapes themselves are generally uniform, for instance,

cuboids or cylinders. Thus, these shapes may differ in their

dimensions and colors, but otherwise look alike. We keep the

principal idea of using metrics for the dimensions and color

and just extend it by using additional metrics to control the

shape or texture. In the following subsections, we will describe

three approaches how to depict metrics such that different

shapes are constructed. After that we will present an approach

that uses the same shape, but provides differences by way of

different textures put on that form.

The metrics to be used to determine the shape should be

related to cloning, that is, similar metric values should indicate

similar code entities. Multiple clone detection techniques are

in fact based on similar metric values. Metric-based techniques

to detect function clones, for instance, use the number of calls

nested in a function, the number of the nodes and edges of the

control-flow graph corresponding to a function and others [21],

[22]. There are also syntax-based techniques using metrics. For

instance, the clone detector Deckard represents subtrees of the

syntax tree as vectors whose elements count the frequency of

node types of a syntax subtree [23]. These techniques work

under the assumption that similar metric values indicate similar

code. Along this line of thought, we recommend to use only

metrics for the visualization that are also meaningful to clone

detection. Specifically, in Section IV, where we present and

discuss concrete example results, we will mimic the approach

by Deckard and count the number of syntactic constructs

contained in a code entity for which to create a shape or

texture.

All the approaches we describe below have in common that

the difference or similarity, respectively, is presented from

only one perspective in a 3D virtual world. The objects in

Code Cities are generally put on a plane so that their ground

area is invisible, thus, their ground area cannot be used to

convey any information. Their sides are in most cases difficult

to see because of other objects standing in front of them, known

as the occlusion problem in 3D visualization. For this reason,

we only use the “roof” of the objects to present the information.

The roof is always visible from above because all objects are

on the same plane and leaves are not stacked onto each other.

A. Circular Polygons

If cylinders are used, the diameter is the determining factor

of the roof. In case two metrics need to be shown, the width and

depth of a cylinder could be stretched accordingly, turning the

circular roof into an ellipse. A more “readable” shape for two

metrics, however, is a cuboid. Its root then forms a rectangle.

If there are three metrics, a triangular roof may be formed.

Thus, the general concept connecting this line of thought is

a circular polygon, where the length of each polygon’s line

segment is proportional to a given metric. A circular polygon

56

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:25:20 UTC from IEEE Xplore. Restrictions apply.

is one in which vertices of the polygon lie on a circle. Such

circular polygons are a natural continuation of the idea leading

to cylinders and cuboids in the first place.

A circular n-sided polygon is determined by a set L of

lengths li (1 ≤ i ≤ n) for one of the polygon’s line segments

(or sides), i, where each li is the value of a metric. If there

are two lengths, lj and lk, with lj �= lk, the polygon is said to

be irregular. To construct such a circular (generally irregular)

polygon, given L, the radius of a circle must be found so that

the starting vertex and ending vertex of each polygon side

representing an li is on the circle and the distance between

those two vertices is li.
Unfortunately, such a polygon exists only if there is no

length lj longer than the sum of the remaining lengths lk
with k �= j. Otherwise all lengths lk would lie on the line

for lj . Another difficulty is that the radius of the circle for

arbitrary many numbers of sides, n, cannot simply be inferred

by solving mathematical equations. Instead it needs to be

found numerically by trial and error. Our implementation uses

binary search in which two circles are iteratively increased

or decreased, respectively, until a radius is found such that

the distance of the vertices is close enough to the circle—as

specified by a user-defined threshold.

B. Spiders

Spider charts (also known as web or radar charts) are often

used to visualize multivariate data for a given entity. They

have also been used to show clone metrics in particular [1].

Here a multi-dimensional co-ordinate system is rendered such

that the center of each axis is at the center of a circle, C, and

all axes are evenly distributed in two dimensions within C
and end at a point on C. Each axis shows the value of one

particular metric, where the distance from the center of C is a

(generally) linear interpolation of the minimum and maximum

of the metric’s value range. The vertices of neighboring axes

can be connected by lines forming a closed area. This area

forms the roof of the shape for an entity in our approach. We

do not actually show the circle of the spider chart because that

might create the impression of a halo and is neither needed to

determine a distinct shape.

The metric values must be normalized such that they fit into

the circle, which is already done by the linear interpolation

mentioned above. We then stretch all axes such that the axes

with the maximal distance to the origin (there may be multiple

such axes) reach the circle. This is analogous to cylinders where

one metric determines the radius. The metrics are given by

the user in a particular order. That order determines the order

of the axes consistently for all nodes showing those metrics.

To ease interpreting those charts, we follow the concept of a

clock. The first metric is put on twelve o’clock and all others

are then distributed clockwise. Unlike the circular irregular

polygons described in the previous section, rendering these

spider charts is straightforward.

A single axis with a value of zero is not a problem for these

spider charts. In fact, it may even be considered as an advantage

for our purpose because it creates a distinct saw kerf. If there

are two or more neighboring axes with a null value, however,

deciphering those spider charts visually becomes difficult.

Spider charts have been criticized for being difficult to read

because the axes point into different directions. If the purpose

is not only to create distinct shapes but also to be able to

interpret these shapes, that is a valid argument. Yet, all axes for

one particular metric are pointing into the same direction and

we expect that comparing the values of the same metric for

different nodes is more important than comparing the values

of different metrics for the same node.

C. Bars

Bar charts are more easily to read than spider charts because

all bars are oriented towards the same direction. For this reason,

we also wanted to experiment with bar-chart like shapes. Here

we use a baseline at which all bars are lined up. Any line

parallel to the plane on which the Code City is placed could be

used because the human beholder can move freely in the 3D

space and look at the shapes from all angles. It makes sense,

however, to select an angle such that the beholder looks a the

full stretch of that line when he or she enters the scenery if

this is not above the Code City. At any rate, the orientation of

the baselines of all bar charts must be consistent.

The length of each bar represents a particular metric. The

width of a bar could depict another metric as in polymetric

views [24]. But then it is becomes more difficult to compare

metrics put on the y axis with metrics put on the x axis.

Arguably even worse, the combination of two large metric

values in one bar will increase the area, which may be

misleading. For this reason, we decided to have the same

width for all bars. For the same reason, we use a fixed size

for the baseline, in other words, the same width for all bars

across all nodes. Because all such bar charts are equally scaled,

corresponding bars can be compared across nodes, too. To

allow that, the order of the bars is consistently again the order

by which a user specified the metrics to be used.

D. Icons

The approaches introduced in Sections III-A–III-C create

visual representations that directly reflect the metrics of the

leaf nodes of the Code City in the form of shapes. Our

fourth approach, icons, takes a different path and is based

on the ideas of: i) locality-sensitive hashing (LSH) and ii) the

visualization of hashes as colored icons. Unlike conventional

hashing methods, where hash collisions are minimized, LSH

defines a special family of hash functions that maximize hash

collisions in that similar objects (code clones in our case) are

hashed into the same bucket—i.e., they have the same hash

value. There are a number of different LSH implementations,

each of which focusing on certain aspects of how to measure

similarity. For example, Nilsimsa is a hashing function which

is used in email spam detection [25]. Another example is

the clone detection tool Deckard [23], which uses LSH to

check the generated syntax tree vectors (cf. Section III) for

similarity. Thus, LSH can be considered an automated clone

detection. The hash values generated by the LSH function used

57

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:25:20 UTC from IEEE Xplore. Restrictions apply.

can then be visualized as icons mapped onto the surface of the

blocks of the Code City using hash visualization algorithms
(HVA). HVA find many applications in computer science, for

example, in security contexts [26], [27], or by services such

as GitHub where user avatars are auto-generated from the

user’s ID. Unfortunately, there may also be unwanted LSH

collisions, that is, entities that are not clones receive the same

hash resulting in a misleading equal icon.

IV. PRELIMINARY STUDY

As stated in the introduction, the approaches we presented

in the previous section are still at the early stage. Our current

research is still exploring the design space of possible solutions.

To get first preliminary insights, we will exemplify here how

those visualizations may look like. After all, visualizations

need to be viewed. To this end, we will show and discuss four

visualizations based on the ideas sketched above for the same

graph.

A. Preparations

To explore our ideas, we implemented a random graph gener-

ator that allows us to create as many graphs as we want based

on multiple constraints. This way we can investigate arbitrary

configurations systematically. Here we present visualizations

for only one particular graph because of limited space. We

chose one that is, on one hand, small enough to fit into this

paper and, on the other hand, large enough to be far from

trivial. The example graph we chose and present here shows

the relevant aspects we want to convey to summarize our

observations for graphs of different characteristics.

The random graph generator is parameterized by the number

of inner nodes and leaves. For the graph we use here, we

specified 90 leaves and 8 inner nodes. In addition, an arbitrary

number of metrics can be generated randomly for each node.

Each metric can be configured by the mean and the standard

deviation. The actual value of a metric is then randomly

selected from the normal distribution parameterized by those

two configuration settings. We chose twelve metrics mimicking

the frequency of syntactic constructs in a method, such as the

number of while, for, and do loops, if statements, and

more. Selecting those kinds of metrics resembles the approach

by Deckard [23]. The mean and standard deviation to form

the normal distribution from which the values are selected

randomly were—in the absence of any real statistics—set by

plausible guesses. For instance, the mean for for was chosen

higher than for while loops, and those for while loops

higher than for do loops. Whether our guesses are accurate

or not is not really relevant for our purpose here because

already the choice of metrics is arbitrary. Other metric-based

clone detectors use very different kinds of metrics. The only

fundamental assumption our visualization variants make is that

the metrics chosen yield different values for different entities

and similar values for similar entities. This assumption is made

by all metric-based clone detectors.

The results of the different visualization approaches for our

random graph can be seen in Figure 1 side by side. All of

these Code Cities are laid out by the same layout algorithm,

namely, EvoStreets [28] (the exact layout may be different

due to different node sizes). For the first three approaches

generating different shapes, the color of the nodes is the same

in order to not distract the beholder. All screenshots are taken

from above the Code City so that there is no depth. The focus

is on the shape or texture, respectively. We suppress all other

visual distraction as much as possible.

As said above, the graph has 90 leaf nodes. This number

makes it difficult for a human beholder to exhaustively compare

shapes and textures pairwise (for this reason, we would never

suggest to replace automated clone detectors by this visual

approach). To help the reader grasp this pictures, we decided

to add edges connecting two nodes that are possible candidates

for clones. These edges are only illustrative and intended as

a visual aid for the reader of our paper and may or may not

be shown in a real use of those kinds of visualization. To

provide these edges, we again followed the scheme of a metric-

based clone detector. We treat the metrics of each node as a

vector and then compute the Euclidean distance. All pairs of

nodes whose Euclidean distance is equal to or below a certain

threshold will be connected by a line. This threshold was

determined by experimentation such that the clone rate reached

28 %, that is, 25 out of 90 nodes were considered clones. If

those nodes were methods in real world, this clone rate would

be above the clone rate Roy and Cordy found for function

clones in C programs; they reported about 15 % depending on

their similarity threshold [29]. We wanted to be a bit more

tolerant regarding the question whether two nodes are similar

so that the reader can look at many suggestions and form his

or her own opinion. Once again, the edges are only here for

assisting the reader; we are not claiming that only connected

nodes should be considered clones, not even that connected

nodes are clones. They serve here that we can contrast our

intuitive point of view with an objective distance measure.

It is also important to note that we normalized the metric

values using the Z score as requested to meaningfully compute

the Euclidean distance. Be reminded that the Euclidean distance

sums up the differences among the corresponding elements

of two vectors. Without such normalization, metrics with a

naturally wider range of values would dominate metrics with a

very narrow range of values. The visualization, however, does

not use this Z score.

B. Observations

When we look at Figure 1, the first observation we can make

is that the spider-like objects (Fig. 1c) are much more distinct

than the two other shape variants, namely, circular polygons

(Fig. 1a) and bar charts (Fig. 1b). The differences among

the circular polygons are very subtle. The primary distinction

among these is their area, but not their shape. The reason for

that is that all vertices are on the same circle, so from far away

they just look like slightly filed off cylinders. We consider

ourselves unable to actually spot the similar shapes.

The bar charts are much more distinct than the circular

polygons, but maybe even too distinct. They require more

58

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:25:20 UTC from IEEE Xplore. Restrictions apply.

cognitive processing and are harder to memorize. It is very

difficult to search for a similar bar chart that is not directly in

the neighborhood of a given one.

(a) Spiders

(b) Bars

Fig. 2: Clone clusters

The spider charts are both simple and distinct shapes. It is

much easier to memorize them and to search for similar ones.

There is one caveat, though, which is shared by all possible

shape variants in general, but which becomes particularly

effective for the spider charts: humans can tolerate certain

transformations of shapes. If a figure is rotated, scaled, or

even flipped, humans will still recognize it. So, there may be

two spider charts that can be turned into each other by those

transformations and, hence, may look similar to a human, but in

fact there is no semantic ground for that because the meaning

of the axes would change by these transformations. That is,

human beholders need to be warned not to fall into this thought

trap. The effect of those transformations runs into the void for

circular polygons as they appear mostly as cylinders and can

hardly be distinguished anyway (except for scaling). Our bar

charts have a fixed baseline and by construction, there will be

no other bar chart that looks like a rotation of another one—

except for the special case when all bars are of equal length,

that is, when two or more bar charts look like rectangles. The

bar charts may, however, be affected by scaling (with respect

to the height of the bars only because their width is the same

for all) and possibly flipping.

Now we look at the pairs of shapes in Figure 1 conntected by

edges. Once again, an edge connects two nodes if the Euclidean

distance is not greater than a given threshold as discussed in

the previous subsection. In order to ease the visual comparison,

Figure 2 shows only the nodes connected by the edges. The

reader might wonder why there are nodes in Figure 2—say A,

B, C—where one edge connects A and B and another edge

connects B and C, but there is no such edge connecting A and

C. That is simply because the Euclidean distance between A
and C is above the threshold; thus, this relation is not transitive.

The edges are labeled by two numbers in Figure 2: (1) the

upper number is a label so that we can refer to the clone

pair; this number is the rank in the ascending order formed

by the Euclidean distance (the higher, the less similar are the

nodes); (2) the number below the rank is the Euclidean distance

between the two nodes connected by the edge. The reader may

form his or her own opinion, but we think that the side-by-

side comparison confirms the remarks we made above: The

similarity is much more visible in the spider charts than in the

bar charts. For instance, the two nodes of clone pair 1 with

the lowest distance can more easily be related to each other

for the spider chart than for the bar chart. At least we make

the comparison for the bar charts by comparing each pair of

corresponding bars to each other, whereas we look first at the

overall shape of the spider charts and only then delve into the

details of the corresponding axes. When we look at a cluster

as a whole, we can more clearly see that nodes in the same

cluster are more similar to each other than nodes in different

clusters when presented as spider charts than when presented

as bar charts. These remarks are derived from self observations.

We plan to conduct eye tracking studies with multiple viewers

to validate these preliminary subjective observations.

The Code City shown in Figure 1d is based on our icons
approach presented in Section III-D. Due to the lack of suitable

LSH and HVA implementations for Unity and C#, which we

use to create our visualizations, we mocked this approach as

follows: Each node in the city is assigned a unique texture

from a fixed pool of textures. The nodes connected by the

clone edges introduced above are grouped to clone classes and

are assigned the same texture (e.g., the clone pairs 2, 4, 7,

and 17 in Figure 2a are grouped together and obtain the same

texture). Grouping similar nodes simulates the LSH part of

our approach. Assigning unique textures, in turn, simulates the

HVA part. From our observation, the textures in Figure 1d are

visually easier to distinguish compared to the other styles; yet,

the many different shapes and colors may have a distracting

effect on human beholders. Moreover, this approach suffers

from two major disadvantages compared to the others: Firstly,

the icons do not allow any conclusions to be drawn about

the underlying metrics. Secondly, similar nodes can only be

recognized as such if they have the exact same texture. Should

two nodes fall below the threshold of similarity (in case of LSH

this means they are hashed into different buckets) their visual

representation differs significantly. Hence, nearly missed clone

59

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:25:20 UTC from IEEE Xplore. Restrictions apply.

pairs and nodes that are in no way similar to each other cannot

be distinguished by users. To overcome this, locality-preserving

hashing (LPH) [30] might be used in favor of LSH. With LPH,

the relative distance between objects is preserved. That is, in

our case, the distance of the hash values of similar nodes is

less than the distance of the hash values of dissimilar nodes. To

take advantage of LPH, though, the hash visualization which

is used to create the textures needs to generate similar images

for similar hashes, too. However, this requirement is generally

not in the focus of HVA.

V. CONCLUSIONS

In this paper, we have presented early ideas to render clones

in Code Cities similarly to each other. Our main motivation

for that is to meet an intuitive expectation of human beholders:

clones should look similar to each other and nodes not clones

of each other should look different. This kind of rendering may

even lead to a visual approach to clone detection; although

we do not really see this as a replacement of automated

clone detectors—in fact, the approach using the same icon

for all clones in a clone cluster relies on some kind of clone

detector. Yet, the visualization may at least help to investigate

the similarity and difference among the clones gathered by

automated clone detectors.

Experimenting with different kinds of shapes, we found

that spider charts are generally better suited than bar charts

because they lead to simpler and more characteristic shapes. We

would not recommend circular polygons because their visual

differences are too subtle. How distinct and memorable icons

are depends very much on the generation of icons of course.

A limitation of our current icon generation is that it is unable

to create similar icons for only similar entities.

Our work towards rendering clones is still at an early

stage. Neither have we explored the space of visual objects

exhaustively, nor have we conducted controlled experiments.

We are not aware of any earlier attempts to render clones

similarly [1] and we hope that our paper will inspire other

researchers to contribute to this aspect of clone visualization.

REFERENCES

[1] M. Hammad, H. A. Basit, S. Jarzabek, and R. Koschke, “A
systematic mapping study of clone visualization,” Computer Science
Review, vol. 37, p. 100266, 2020. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1574013719302679

[2] C. Knight and M. Munro, “Virtual but visible software,” in International
Conference on Information Visualization. IEEE, 2000, pp. 198–205.

[3] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
IEEE International Workshop on Visualizing Software for Understanding
and Analysis, Jun. 2007, pp. 92–99.

[4] R. Koschke and M. Steinbeck, “See your clones with your teammates,”
in International Workshop on Software Clones, 2021, pp. 15–21.

[5] D. H. R. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, Sep. 2006.

[6] B. Johnson and B. Shneiderman, “Tree-maps: A space-filling approach to
the visualization of hierarchical information structures,” in Proceedings
of the Conference on Visualization. IEEE Computer Society Press, 1991,
pp. 284–291.

[7] K. Andrews, J. Wolte, and M. Pichler, “Information pyramids: A new
approach to visualising large hierarchies,” in IEEE Conference on
Visualization. IEEE Computer Society Press, 1997, pp. 49–52.

[8] F. Fittkau, S. Roth, and W. Hasselbring, “ExplorViz: visual runtime
behavior analysis of enterprise application landscapes,” in European
Conference on Information Systems, 2015, pp. 1–13.

[9] G. o. Balogh, A. Szabolics, and A. Beszédes, “CodeMetropolis: Eclipse
over the city of source code,” in Conference on Source Code Analysis
and Manipulation, Sep. 2015, pp. 271–276.

[10] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “CityVR:
Gameful software visualization,” in International Conference on Software
Maintenance and Evolution (TD Track), 2017, pp. 633–637.

[11] W. Scheibel, C. Weyand, and J. Döllner, “EvoCells - A treemap layout
algorithm for evolving tree data,” in International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications, 2018, pp. 273–280.

[12] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, and M. Misiak,
“Visualization of software architectures in virtual reality and augmented
reality,” IEEE Aerospace Conference, pp. 1–12, 2019.

[13] D. Limberger, W. Scheibel, J. Döllner, and M. Trapp, “Advanced visual
metaphors and techniques for software maps,” in International Symposium
on Visual Information Communication and Interaction, Sep. 2019, pp.
1–8.

[14] V. Dashuber, M. Philippsen, and J. Weigend, “A layered software city for
dependency visualization,” in International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications, vol. 3.
SciTePress, 2021, pp. 15–26.

[15] R. Koschke and M. Steinbeck, “Modeling, visualizing, and checking
software architectures collaboratively in shared virtual worlds,” in
Workshop on Software Architecture and Architectural Consistency, 2021.

[16] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal on Software
Maintenance and Evolution, vol. 15, no. 2, pp. 87–109, 2003.

[17] F. Steinbrückner and C. Lewerentz, “Representing development history
in software cities,” in ACM Symposium on Software Visualization. ACM,
2010, pp. 193–202.

[18] R. Koschke and M. Steinbeck, “Clustering paths with dynamic time
warping,” in Working Conference on Software Visualization, 2020, pp.
89–99.

[19] M. Wertheimer, Festschrift für Carl Stumpf, ser. Psychologische
Forschung; Zeitschrift für Psychologie und ihre Grenzwissenschaften.
Verlag von Julius Springer, 1923, vol. 4, ch. Untersuchungen zur Lehre
von der Gestalt, pp. 301–350.

[20] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison
and evaluation of clone detection tools,” IEEE Transactions on Software
Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[21] J. Mayrand, C. Leblanc, and E. M. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics,” in
Proceedings of the International Conference on Software Maintenance.
Washington: IEEE Computer Society Press, Nov. 4–8 1996, pp. 244–254.

[22] K. Kontogiannis, “Evaluation experiments on the detection of program-
ming patterns using software metrics,” in IEEE Working Conference on
Reverse Engineering, 1997, pp. 44–53.

[23] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in International Conference
on Software Engineering. IEEE Computer Society, 2007, pp. 96–105.

[24] M. Lanza and S. Ducasse, “Polymetric views—a lightweight visual
approach to reverse engineering,” IEEE Transactions on Software
Engineering, vol. 29, no. 9, pp. 782–795, Sep. 2003.

[25] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati, “An open
digest-based technique for spam detection,” in ISCA PDCS, 01 2004, pp.
559–564.

[26] A. Perrig and D. X. Song, “Hash visualization: a new technique to
improve real-world security,” in International Workshop on Cryptographic
Techniques and E-Commerce, 1999.

[27] J. Fietkau and M. Balthasar, “Using hash visualization for real-time
user-governed password validation,” in Mensch und Computer 2019 -
Workshopband. Bonn: Gesellschaft für Informatik e.V., 2019.

[28] F. Steinbrückner, “Consistent software cities: supporting comprehension
of evolving software systems,” Ph.D. dissertation, Brandenburgischen
Technischen Universität Cottbus, Cottbus, 06 2013.

[29] C. Roy and J. Cordy, “An empirical study of function clones in open
source software,” in IEEE Working Conference on Reverse Engineering,
10 2008, pp. 81–90.

[30] Y.-H. Tsai and M.-H. Yang, “Locality preserving hashing,” in 2014 IEEE
International Conference on Image Processing (ICIP), Oct 2014, pp.
2988–2992.

60

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:25:20 UTC from IEEE Xplore. Restrictions apply.

(a) Polygons (b) Bars

(c) Spiders (d) Icons

Fig. 1: Different styles. Edges highlight possible candidates for clones.

61

Authorized licensed use limited to: STAATS U UNIBIBL BREMEN. Downloaded on April 12,2023 at 13:25:20 UTC from IEEE Xplore. Restrictions apply.

