With this program, you can run gaze estimation on images and videos. By default, the video from a webcam will be used. Can select the camera to use.
To train a model for MPIIGaze and MPIIFaceGaze, use this repository. You can also use this repo to train a model with ETH-XGaze dataset.
ptgaze --mode eth-xgaze
usage: ptgaze [-h] [--config CONFIG] [--mode {mpiigaze,mpiifacegaze,eth-xgaze}]
[--face-detector {dlib,face_alignment_dlib,face_alignment_sfd,mediapipe}]
[--device {cpu,cuda}] [--image IMAGE] [--video VIDEO] [--camera CAMERA]
[--output-dir OUTPUT_DIR] [--ext {avi,mp4}] [--no-screen] [--debug]
optional arguments:
-h, --help show this help message and exit
--config CONFIG Config file. When using a config file, all the other commandline arguments
are ignored. See
https://github.com/unfortunate-code/unfortunate-code/ptgaze/data/configs/eth-
xgaze.yaml
--mode {mpiigaze,mpiifacegaze,eth-xgaze}
With 'mpiigaze', MPIIGaze model will be used. With 'mpiifacegaze',
MPIIFaceGaze model will be used. With 'eth-xgaze', ETH-XGaze model will be
used.
--face-detector {dlib,face_alignment_dlib,face_alignment_sfd,mediapipe}
The method used to detect faces and find face landmarks (default:
'mediapipe')
--device {cpu,cuda} Device used for model inference.
--image IMAGE Path to an input image file.
--video VIDEO Path to an input video file.
--camera CAMERA Camera calibration file. See https://github.com/unfortunate-code/pytorch_mpiigaze_demo/
ptgaze/data/calib/sample_params.yaml
--camera-index The index of the camera device to use for the video.
--output-dir OUTPUT_DIR, -o OUTPUT_DIR
If specified, the overlaid video will be saved to this directory.
--ext {avi,mp4}, -e {avi,mp4}
Output video file extension.
--no-screen If specified, the video is not displayed on screen, and saved to the output
directory.
--debug
--left For stereo cameras, this parameter can be used to capture only the left feed.
--right For stereo cameras, this parameter can be used to capture only the right feed.
While processing an image or video, press the following keys on the window to show or hide intermediate results:
l
: landmarksh
: head poset
: projected points of 3D face modelb
: face bounding boxe
: Shows the distance between eyes (as a vector)f
: Shows hand landmarks
- Zhang, Xucong, Seonwook Park, Thabo Beeler, Derek Bradley, Siyu Tang, and Otmar Hilliges. "ETH-XGaze: A Large Scale Dataset for Gaze Estimation under Extreme Head Pose and Gaze Variation." In European Conference on Computer Vision (ECCV), 2020. arXiv:2007.15837, Project Page, GitHub
- Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "Appearance-based Gaze Estimation in the Wild." Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. arXiv:1504.02863, Project Page
- Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "It's Written All Over Your Face: Full-Face Appearance-Based Gaze Estimation." Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), 2017. arXiv:1611.08860, Project Page
- Zhang, Xucong, Yusuke Sugano, Mario Fritz, and Andreas Bulling. "MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation." IEEE transactions on pattern analysis and machine intelligence 41 (2017). arXiv:1711.09017
- Zhang, Xucong, Yusuke Sugano, and Andreas Bulling. "Evaluation of Appearance-Based Methods and Implications for Gaze-Based Applications." Proc. ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), 2019. arXiv, code