-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
187 lines (141 loc) · 5.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import math
import ast
import collections
import random
import numpy as np
import pandas as pd
import pickle
import copy
import torch
from scipy import sparse
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, roc_auc_score, log_loss
# from google_drive_downloader import GoogleDriveDownloader as gdd
from tqdm import tqdm
from sklearn.preprocessing import LabelEncoder
from metrics import calc_metrics_at_k
# from IPython import embed
# 2d array to dictionary
# input: [[user_id, item_id, timestamp], ...] numpy array
# output: {user_id: [item1, item2, ......], ...} dictionary
def make_to_dict(data):
data_dict = {}
cur_user = -1
tmp_user = []
for row in data:
user_id, item_id = row[0], row[1]
if user_id != cur_user:
if cur_user != -1:
tmp = np.asarray(tmp_user)
tmp_items = tmp[:, 1]
data_dict[cur_user] = list(tmp_items)
cur_user = user_id
tmp_user = []
tmp_user.append(row)
if cur_user != -1:
tmp = np.asarray(tmp_user)
tmp_items = tmp[:, 1]
data_dict[cur_user] = list(tmp_items)
return data_dict
def compute_metrics(pred_u, target_u, top_k):
pred_k = pred_u[:top_k]
num_target_items = len(target_u)
hits_k = [(i + 1, item) for i, item in enumerate(pred_k) if item in target_u]
num_hits = len(hits_k)
idcg_k = 0.0
for i in range(1, min(num_target_items, top_k) + 1):
idcg_k += 1 / math.log(i + 1, 2)
dcg_k = 0.0
for idx, item in hits_k:
dcg_k += 1 / math.log(idx + 1, 2)
prec_k = num_hits / top_k
recall_k = num_hits / min(num_target_items, top_k)
ndcg_k = dcg_k / idcg_k
return prec_k, recall_k, ndcg_k
def eval_implicit(model, train_data, test_data, top_k):
prec_list = []
recall_list = []
ndcg_list = []
if 'Item' in model.__class__.__name__:
num_users, num_items = train_data.shape
pred_matrix = np.zeros((num_users, num_items))
for item_id in range(len(train_data.T)):
train_by_item = train_data[:, item_id]
missing_user_ids = np.where(train_by_item == 0)[0] # missing user_id
pred_u_score = model.predict(item_id, missing_user_ids)
pred_matrix[missing_user_ids, item_id] = pred_u_score
for user_id in range(len(train_data)):
train_by_user = train_data[user_id]
missing_item_ids = np.where(train_by_user == 0)[0] # missing item_id
pred_u_score = pred_matrix[user_id, missing_item_ids]
pred_u_idx = np.argsort(pred_u_score)[::-1]
pred_u = missing_item_ids[pred_u_idx]
test_by_user = test_data[user_id]
target_u = np.where(test_by_user >= 0.5)[0]
prec_k, recall_k, ndcg_k = compute_metrics(pred_u, target_u, top_k)
prec_list.append(prec_k)
recall_list.append(recall_k)
ndcg_list.append(ndcg_k)
else:
for user_id in range(len(train_data)):
train_by_user = train_data[user_id]
missing_item_ids = np.where(train_by_user == 0)[0] # missing item_id
pred_u_score = model.predict(user_id, missing_item_ids)
pred_u_idx = np.argsort(pred_u_score)[::-1] # 내림차순 정렬
pred_u = missing_item_ids[pred_u_idx]
test_by_user = test_data[user_id]
target_u = np.where(test_by_user >= 0.5)[0]
prec_k, recall_k, ndcg_k = compute_metrics(pred_u, target_u, top_k)
prec_list.append(prec_k)
recall_list.append(recall_k)
ndcg_list.append(ndcg_k)
return np.mean(prec_list), np.mean(recall_list), np.mean(ndcg_list)
def eval_sequential(model, train_data, valid_data, test_data, usernum, itemnum, top_k=100, mode='valid'):
import random
if test_data == None:
keys = random.sample(list(train_data.keys()),1000)
new_train = dict()
new_valid = dict()
new_test = dict()
for i in keys:
new_train[i] = train_data[i]
new_valid[i] = valid_data[i]
if test_data != None:
new_test[i] = test_data[i]
if test_data == None:
new_test = None
else:
keys = range(usernum)
new_train = train_data
new_valid = valid_data
new_test = test_data
[train_data, valid_data, test_data, usernum, itemnum] = copy.deepcopy([new_train, new_valid, new_test, usernum, itemnum])
NDCG = 0.0
eval_user = 0.0
HT = 0.0
users = range(len(keys))
for u in tqdm(keys, desc=f'{mode}', dynamic_ncols=True):
if len(train_data[u]) < 1 or len(train_data[u]) < 1: continue
seq = np.zeros([model.maxlen], dtype=np.int32)
idx = model.maxlen - 1
if mode == 'test':
seq[idx] = valid_data[u][0]
for i in reversed(train_data[u]):
seq[idx] = i
idx -= 1
if idx == -1: break
rated = train_data[u]
target_item = test_data[u][0] if mode == 'test' else valid_data[u][0]
if mode == 'test':
rated.append(valid_data[u][0])
item_idx = list(range(itemnum))
predictions = model.predict(*[np.array(l) for l in [[u], [seq], item_idx]])
predictions[rated] = -np.inf
sorted_items = np.argsort(-predictions.cpu().detach().numpy())
rank = np.where(sorted_items == target_item)[0][0]
eval_user += 1
if rank < top_k:
NDCG += 1 / np.log2(rank + 2)
HT += 1
return NDCG / eval_user, HT / eval_user