forked from EdwardMLewis/wdpa-statistics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonthly_pa_analysis_script.py
637 lines (475 loc) · 39.6 KB
/
monthly_pa_analysis_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# Name: Global coverage analysis script
# Purpose: A script based on an Esri model to calculate PA coverage globally, regionally and nationally as well as calculating national and PAME statistics.
# Author: Ed Lewis ([email protected])
# Created: 01/07/2019
# Last updated: 02/04/2020
# ArcGIS Version: Pro(2.1+)
# Python: 3.1+
#--------------------------------------------------------------------------------------------------------------------------
# Preamble: Define the script workspaces
# import arcpy modules
import arcpy
import os
import time
import urllib.request
import zipfile
import random
from arcpy import env
#start the stopwatch
start = time.clock()
# enable the overwriting of outputs
arcpy.env.overwriteOutput = True
# define root folder for all outputs
rootfolder = r"C:\Users\EdwardL\Downloads"
pactfolder = arcpy.CreateFolder_management(rootfolder,"PACT_script")
outputfolder = arcpy.CreateFolder_management(pactfolder,"PACT_outputs")
sbafolder = arcpy.CreateFileGDB_management(outputfolder,"SBA_outputs")
inputfolder = arcpy.CreateFolder_management(pactfolder,"PACT_inputs")
# create a new file geodatabase in the root folder for all the script outputs
workspace = arcpy.CreateFileGDB_management(outputfolder,"PACT_script_outputs")
# define the scratch workspace for outputs we dont want to keep, this will be deleted at the end of the script
scratchworkspace = arcpy.CreateFileGDB_management(outputfolder,"PACT_script_scratch_workspace")
#--------------------------------------------------------------------------------------------------------------------------
# Stage 0: Specify file paths and define access level
print ("Stage 0: Define the inputs and access level")
print ("Stage 0.1: Access level")
# do you have access to the restricted protected area data? If you do not then put False
restricted = True
if restricted == True:
print("Access level = WCMC")
else:
print("Access level = public")
# if you have access to the restricted data then copy the file paths here:
if restricted == True:
# define location of restricted CHN points
in_restrict_chn_pnt = r"I:\_Monthly_Coverage_Stats_\0_Tools\0_Test_Data\Restricted_subset_model_testing.gdb\CHN_restricted_testing_for_model_pnt"
# define location of restricted CHN polygons
in_restrict_chn_poly = r"I:\_Monthly_Coverage_Stats_\0_Tools\0_Test_Data\Restricted_subset_model_testing.gdb\CHN_restricted_testing_for_model"
# define location of restricted SHN polygons
in_restrict_shn_poly = r"I:\_Monthly_Coverage_Stats_\0_Tools\0_Test_Data\Restricted_subset_model_testing.gdb\SHN_restricted_testing_for_model"
# define location of restricted EST polygons
in_restrict_cdda_poly = r"I:\_Monthly_Coverage_Stats_\0_Tools\0_Test_Data\Restricted_subset_model_testing.gdb\EST_restricted_testing_for_model"
# restricted CAN polygons
#in_restrict_can_poly = r"E:\WDPA\0_Useful_material\monthly_pa_analysis_testing_dataset\WDPA_subset_model_testing.gdb\CAN_restricted_50_testing_for_model"
print ("Stage 0.2: PAME sites")
# define the list of protected areas that have pame assessments
in_pame_sites = r"I:\_Monthly_Coverage_Stats_\0_Tools\1_Basemap\Restricted_Data.gdb\PAME_Sites"
print ("Stage 0.3: OECM sites")
# define the input for the oecm data
in_oecmpoly = r"I:\_Monthly_Coverage_Stats_\0_Tools\4_OECMs\WDOECM_Apr2020_Public\WDOECM_Apr2020_Public.gdb\WDOECM_poly_Apr2020"
print ("Stage 0.4 PA sites")
### THIS SECTION WORKS BUT IS MASKED OUT WHILST WE ARE RUNNING TESTS ####
# downloads the most recent version of the WDPA from Protected Planet and saves it in the root directory
#print ('Downloading the latest WDPA from Protected Planet....')
#url = r'http://wcmc.io/wdpa_current_release'
#filename = str(inputfolder) + r"\\WDPA_Latest.zip"
#targetfile = urllib.request.urlretrieve(url, filename)
#print ('Unzipping the WDPA...')
# unzips the folder to enable the file geodatabase to be queried, also in the root directory
#handle = zipfile.ZipFile(filename)
#handle.extractall(str(inputfolder))
#handle.close
#env.workspace = str(inputfolder)
# for the inputfolder, list the feature classes that are polygons and join the file path componentes to specify the exact polygon input for the script
#for dirpath, dirnames, filenames in arcpy.da.Walk(inputfolder, datatype="FeatureClass", type="Polygon"):
for filename in filenames:
in_polygons = os.path.join(dirpath,filename)
# for the inputfolder, list the feature classes that are points and join the file path componentes to specify the exact point input for the script
for dirpath, dirnames, filenames in arcpy.da.Walk(inputfolder, datatype="FeatureClass", type="Multipoint"):
for filename in filenames:
in_points = os.path.join(dirpath,filename)
##########################################################################
# define the protected area point and polygon inputs [doing this manually or now]
in_points = r"I:\_Monthly_Coverage_Stats_\0_Tools\0_Test_Data\tiny_subset.gdb\CHL_Test_Pnt"
in_polygons = r"I:\_Monthly_Coverage_Stats_\0_Tools\0_Test_Data\tiny_subset.gdb\BLM_model_testing_subset"
print ("Stage 0.5: Basemaps")
###### - SCRIPTS TO AUTOMATE DOWNLOADING THE BASEMAPS - IGNORE FOR NOW####
#print('Downloading the basemaps from XXXX')
# download the basemaps from [INSERT PLACE]
#url = r'ENTER THE BASEMAP FILE PATH HERE'
#filename = str(inputfolder) + r"\\basemaps.zip"
#targetfile = urllib.request.urlretrieve(url, filename)
#print ('Unzipping the basemaps...')
# unzips the folder to enable the file geodatabase to be queried, also in the root directory
#handle = zipfile.ZipFile(filename)
#handle.extractall(str(inputfolder))
#handle.close
###################################################################################
# define spatial basemap input - country boundaries etc
in_basemap_spat = r"I:\_Monthly_Coverage_Stats_\0_Tools\1_Basemap\Basemap.gdb\EEZv8_WVS_DIS_V3_ALL_final_v7dis_with_SDG_regions_for_models"
# define tabular basemap input - just the attribute table of in_basemap_spat
in_basemap_tab = r"I:\_Monthly_Coverage_Stats_\0_Tools\1_Basemap\Basemap.gdb\EEZv8_WVS_DIS_V3_ALL_final_v7dis_with_SDG_regions_for_models_tabular"
print ("Stage 0.6: Supporting information from Github Repo")
# download the supporting files from the github repo
print('Downloading the supporting files from [Eds] GitHub repo....')
url = r'http://github.com/EdwardMLewis/wdpa-statistics/archive/master.zip'
filename = str(inputfolder) + r"\\Github_supporting_files.zip"
targetfile = urllib.request.urlretrieve(url, filename)
print ('Unzipping the supporting files...')
# unzips the folder to enable the file geodatabase to be queried, also in the root directory
handle = zipfile.ZipFile(filename)
handle.extractall(str(inputfolder))
handle.close
# rename the unzipped folder
arcpy.Rename_management(r"C:\Users\EdwardL\Downloads\PACT_script\PACT_inputs\wdpa-statistics-master",r"C:\Users\EdwardL\Downloads\PACT_script\PACT_inputs\Github_supporting_files")
print ("Stage 0.7: Projection files")
# define the projection files used to define outputs/workspaces
in_mollweideprj = str(inputfolder) + "\\Github_supporting_files\moll_projection.prj"
#--------------------------------------------------------------------------------------------------------------------------
# Stage 1: Global and Regional analysis
print ("Stage 1 of 2: Global and Regional analysis")
arcpy.env.workspace = str(workspace)
# combine the point inputs together depending on whether restricted data is included or not
if restricted == True:
all_points = arcpy.Merge_management([in_points,in_restrict_chn_pnt], 'all_points')
all_polygons = arcpy.Merge_management([in_polygons, in_restrict_chn_poly, in_restrict_shn_poly, in_restrict_cdda_poly], 'all_polygons')
else:
all_points = in_points
all_polygons = in_polygons
# repair geometries for newly merged files
arcpy.RepairGeometry_management(all_points,"DELETE_NULL","OGC")
arcpy.RepairGeometry_management(all_polygons,"DELETE_NULL","OGC")
# remove the sites that have an uncertain status or have potentially very innacruate areas
arcpy.Select_analysis(all_points, r"in_memory\all_wdpa_points_select","STATUS in ('Adopted', 'Designated', 'Inscribed') AND NOT DESIG_ENG = 'UNESCO-MAB Biosphere Reserve'")
arcpy.Select_analysis(all_polygons, r"in_memory\all_wdpa_polygons_select","STATUS in ('Adopted', 'Designated', 'Inscribed') AND NOT DESIG_ENG = 'UNESCO-MAB Biosphere Reserve'")
# convert the point selection into a polygon by buffering by the REP_AREA
arcpy.AddField_management(r"in_memory\all_wdpa_points_select","radius","DOUBLE")
arcpy.CalculateField_management(r"in_memory\all_wdpa_points_select","radius","math.sqrt(!REP_AREA!/math.pi )*1000","PYTHON_9.3")
arcpy.PairwiseBuffer_analysis(r"in_memory\all_wdpa_points_select",r"in_memory\all_wdpa_points_select_buff","radius","","","GEODESIC","")
# combine the poly selection with the buffered point selection
# the output (hereafter 'polybuffpnt') represents the starting point for the monthly release - it is all the sites we include in the analysis in one file
## IF you want to do count analyses then do it on *this* file
arcpy.Merge_management([r"in_memory\all_wdpa_points_select_buff",r"in_memory\all_wdpa_polygons_select"],"all_wdpa_polybuffpnt")
# repair the polybuffpnt
arcpy.RepairGeometry_management("all_wdpa_polybuffpnt","DELETE_NULL","OGC")
# randomly reassign a STATUS_YR value to those sites that dont have one
field = ['STATUS_YR']
with arcpy.da.UpdateCursor('all_wdpa_polybuffpnt',field) as cursor:
for row in cursor:
if row[0] == 0:
row[0] = random.randint(1819,2020)
cursor.updateRow(row)
# rename the ISO3 field in the WDPA to clarify it is the WDPA ISO3 and not a basemap ISO3
arcpy.AlterField_management("all_wdpa_polybuffpnt","ISO3","WDPA_ISO3")
# split up the polybuffpnt using the Union tool - this splits up the WDPA like a Venn diagram
arcpy.Union_analysis("all_wdpa_polybuffpnt","all_wdpa_polybuffpnt_union")
# repair the output of the union
arcpy.RepairGeometry_management("all_wdpa_polybuffpnt_union","DELETE_NULL","OGC")
# add xy coordinates for each of the ~1 million segments
arcpy.AddGeometryAttributes_management("all_wdpa_polybuffpnt_union","CENTROID")
# add a new field to concatenate the new x and y coordinate fields
arcpy.AddField_management("all_wdpa_polybuffpnt_union","XYco","TEXT")
# populate this new XYco field
arcpy.CalculateField_management("all_wdpa_polybuffpnt_union","XYco","str(!CENTROID_X!) + str(!CENTROID_Y!)","PYTHON_9.3")
# run a summary of the XYco field, showing how many instances there are of each XYyco, i.e. how many segments have
# exactly the same XYco, and by extension geometry.
arcpy.Statistics_analysis("all_wdpa_polybuffpnt_union","xyco_count",[["XYco","COUNT"]],"XYco")
# join (add) the XYco field from the summary table to the output of the union
arcpy.JoinField_management("all_wdpa_polybuffpnt_union","XYco","xyco_count","XYco","COUNT_XYco")
# select out all of the segments which only have 1 XYco, i.e. the novel geometries with no overlaps within the WDPA
arcpy.Select_analysis("all_wdpa_polybuffpnt_union",r"in_memory\all_wdpa_polybuffpnt_union_unique","COUNT_XYco = 1")
# select out all of the segments which have >1 XYco, i.e. geometries which overlap within the WDPA
arcpy.Select_analysis("all_wdpa_polybuffpnt_union","all_wdpa_polybuffpnt_union_duplicates","COUNT_XYco > 1")
# run a summary report listing the lowest STATUS_YR for each duplicate area by XYco
arcpy.Statistics_analysis("all_wdpa_polybuffpnt_union_duplicates",r"in_memory\all_wdpa_polybuffpnt_union_duplicates_earliest_sum",[["STATUS_YR","MIN"]],"XYco")
# make a copy of the duplicates
arcpy.Copy_management("all_wdpa_polybuffpnt_union_duplicates","all_wdpa_polybuffpnt_union_duplicates_flat")
# delete all identical XYcos from the copied duplicates, we dont care about the values, just the geometreis and making it flat
arcpy.DeleteIdentical_management("all_wdpa_polybuffpnt_union_duplicates_flat","XYco")
# join the summary report to the copied duplicates
arcpy.JoinField_management("all_wdpa_polybuffpnt_union_duplicates_flat","XYco",r"in_memory\all_wdpa_polybuffpnt_union_duplicates_earliest_sum","XYco","MIN_status_yr")
# recalculate status_yr so that each XYco has the earliest status_yr that geometry had
arcpy.CalculateField_management("all_wdpa_polybuffpnt_union_duplicates_flat","STATUS_YR","!MIN_status_yr!")
# remove the field
arcpy.DeleteField_management("all_wdpa_polybuffpnt_union_duplicates_flat","MIN_status_yr")
# merge these site back into the unique geometries - creating a flat layer which has the whole WDPA schema populated still.
## If you want to do count analyses do it on the polybuffpnt, if you want to do spatial analyses, do it with this file.
arcpy.Merge_management(["all_wdpa_polybuffpnt_union_duplicates_flat",r"in_memory\all_wdpa_polybuffpnt_union_unique"],r"in_memory\all_wdpa_polybuffpnt_union_flat")
# repair the recombined layer
arcpy.RepairGeometry_management(r"in_memory\all_wdpa_polybuffpnt_union_flat","DELETE_NULL","OGC")
# intersect it with the basemap
arcpy.PairwiseIntersect_analysis([r"in_memory\all_wdpa_polybuffpnt_union_flat",in_basemap_spat],r"in_memory\all_wdpa_polybuffpnt_union_flat_intersect")
# repair it
arcpy.RepairGeometry_management(r"in_memory\all_wdpa_polybuffpnt_union_flat_intersect","DELETE_NULL","OGC")
# project it into mollweide, an equal area projection
arcpy.Project_management(r"in_memory\all_wdpa_polybuffpnt_union_flat_intersect","all_wdpa_polybuffpnt_union_flat_intersect_project",in_mollweideprj)
# repair it
arcpy.RepairGeometry_management("all_wdpa_polybuffpnt_union_flat_intersect_project","DELETE_NULL","OGC")
# add and calculate a new area field
arcpy.AddGeometryAttributes_management("all_wdpa_polybuffpnt_union_flat_intersect_project","AREA_GEODESIC","","SQUARE_KILOMETERS",in_mollweideprj)
# now we get into the creation of summary statistic tables
# for the explanation and underlying rationale for these decisions please see accompanying metadata.
# GLOBAL SUMMARY REPORTS
# select only sites outside of the ABNJ (they get treated separately)
arcpy.Select_analysis("all_wdpa_polybuffpnt_union_flat_intersect_project", r"in_memory\all_wdpa_polybuffpnt_union_flat_intersect_project_nonabnj", "WDPA_ISO3 NOT IN ('ABNJ')")
# change the 'type' field in the non_abnj selection so that ABNJ is always changed to 'EEZ' (nationally designated sites go over into the geographic ABNJ)
arcpy.CalculateField_management(r"in_memory\all_wdpa_polybuffpnt_union_flat_intersect_project_nonabnj","type","!type!.replace('ABNJ','EEZ')", 'PYTHON3')
# run some summary stats on the Land + EEZ selection for the current year (current) and broken down per year (current)
arcpy.Statistics_analysis(r"in_memory\all_wdpa_polybuffpnt_union_flat_intersect_project_nonabnj","global_summary_statistics_current",[["AREA_GEO","SUM"]],"type")
arcpy.Statistics_analysis(r"in_memory\all_wdpa_polybuffpnt_union_flat_intersect_project_nonabnj","global_summary_statistics_temporal",[["AREA_GEO","SUM"]],["type", "STATUS_YR"])
# select out just the rows with an ISO3 of 'ABNJ'
arcpy.Select_analysis("all_wdpa_polybuffpnt_union_flat_intersect_project",r"in_memory\ABNJ_sites","WDPA_ISO3 = 'ABNJ'")
# run some global summary stats on the ABNJ selection for the current year (current) and broken down per year (temporal)
arcpy.Statistics_analysis(r"in_memory\ABNJ_sites",r"in_memory\abnj_global_summary_statistics_current",[["AREA_GEO","SUM"]],"type")
arcpy.Statistics_analysis(r"in_memory\ABNJ_sites",r"in_memory\abnj_global_summary_statistics_temporal",[["AREA_GEO","SUM"]],["type", "STATUS_YR"])
# pivot the global current, global temporal summary table and the abnj temporal summary tables
arcpy.PivotTable_management("global_summary_statistics_temporal",["STATUS_YR"],"type","SUM_AREA_GEO","global_summary_statistics_temporal_pivot")
arcpy.PivotTable_management(r"in_memory\abnj_global_summary_statistics_temporal",["STATUS_YR"],"type","SUM_AREA_GEO","abnj_summary_statistics_temporal_pivot")
# add the abnj tables into the global summary tables
arcpy.Append_management(r"in_memory\abnj_global_summary_statistics_current","global_summary_statistics_current","NO_TEST")
arcpy.JoinField_management("global_summary_statistics_temporal_pivot","STATUS_YR","abnj_summary_statistics_temporal_pivot","STATUS_YR", 'ABNJ')
# update the fields so that they show '0' as opposed to blank cells
# define the codeblock1
in_codeblock1 = """
def updateValue(value):
if value == None:
return '0'
else: return value"""
arcpy.CalculateField_management("global_summary_statistics_temporal_pivot","EEZ","updateValue(!EEZ!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("global_summary_statistics_temporal_pivot","Land","updateValue(!Land!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("global_summary_statistics_temporal_pivot","ABNJ","updateValue(!ABNJ!)","PYTHON_9.3", in_codeblock1)
# Add in three new fields, to track the cumulative area
arcpy.AddField_management("global_summary_statistics_temporal_pivot","EEZ_net","LONG")
arcpy.AddField_management("global_summary_statistics_temporal_pivot","Land_net","LONG")
arcpy.AddField_management("global_summary_statistics_temporal_pivot","ABNJ_net","LONG")
# Calculate the three net fields
# define codeblock2
in_codeblock2 = """
total = 0
def accumulate(increment):
global total
if total:
total += increment
else:
total = increment
return total"""
arcpy.CalculateField_management("global_summary_statistics_temporal_pivot","EEZ_net","accumulate(!EEZ!)","PYTHON_9.3", in_codeblock2)
arcpy.CalculateField_management("global_summary_statistics_temporal_pivot","Land_net","accumulate(!Land!)","PYTHON_9.3", in_codeblock2)
arcpy.CalculateField_management("global_summary_statistics_temporal_pivot","ABNJ_net","accumulate(!ABNJ!)","PYTHON_9.3", in_codeblock2)
# REGIONAL SUMMARY REPORTS
# run some summary stats on the regional for the current year (current) and broken down per year (temporal)
arcpy.Statistics_analysis(r"in_memory\all_wdpa_polybuffpnt_union_flat_intersect_project_nonabnj",r"in_memory\regional_summary_statistics_current",[["AREA_GEO","SUM"]],["sdg_region","type"])
arcpy.Statistics_analysis(r"in_memory\all_wdpa_polybuffpnt_union_flat_intersect_project_nonabnj", r"in_memory\regional_summary_statistics_temporal",[["AREA_GEO","SUM"]],["type", "STATUS_YR","sdg_region"])
# run some global summary stats on the ABNJ selection for the current year (current) and broken down per year (temporal)
arcpy.Statistics_analysis(r"in_memory\ABNJ_sites",r"in_memory\abnj_regional_summary_statistics_current",[["AREA_GEO","SUM"]],["type","sdg_region"])
arcpy.Statistics_analysis(r"in_memory\ABNJ_sites",r"in_memory\abnj_regional_summary_statistics_temporal",[["AREA_GEO","SUM"]],["type", "sdg_region", "STATUS_YR"])
# add in the abnj area to the regional summary tables
arcpy.Append_management(r"in_memory\abnj_regional_summary_statistics_current",r"in_memory\regional_summary_statistics_current","NO_TEST")
arcpy.Append_management(r"in_memory\abnj_regional_summary_statistics_temporal",r"in_memory\regional_summary_statistics_temporal","NO_TEST")
# pivot the regional temporal summary table and the ABNJ table
arcpy.PivotTable_management(r"in_memory\regional_summary_statistics_current",["sdg_region"],"type","SUM_AREA_GEO","regional_summary_statistics_current_pivot")
arcpy.PivotTable_management(r"in_memory\regional_summary_statistics_temporal",["STATUS_YR","sdg_region"],"type","SUM_AREA_GEO","regional_summary_statistics_temporal_pivot")
# update the fields so that they show '0' as opposed to blank cells
arcpy.CalculateField_management("regional_summary_statistics_current_pivot","EEZ","updateValue(!EEZ!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("regional_summary_statistics_current_pivot","Land","updateValue(!Land!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("regional_summary_statistics_current_pivot","ABNJ","updateValue(!ABNJ!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("regional_summary_statistics_temporal_pivot","EEZ","updateValue(!EEZ!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("regional_summary_statistics_temporal_pivot","Land","updateValue(!Land!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("regional_summary_statistics_temporal_pivot","ABNJ","updateValue(!ABNJ!)","PYTHON_9.3", in_codeblock1)
print ("The global and regional summary tables can now be used by themselves or copied into the monthly summary statistics templates for QC")
# run some count statistics
arcpy.Statistics_analysis("all_wdpa_polybuffpnt","count_MARINE",[["WDPAID","COUNT"]],"MARINE")
arcpy.Statistics_analysis("all_wdpa_polybuffpnt","count_IUCNCAT",[["WDPAID","COUNT"]],"IUCN_CAT")
arcpy.Statistics_analysis("all_wdpa_polybuffpnt","count_GOVTYPE",[["WDPAID","COUNT"]],"GOV_TYPE")
arcpy.Statistics_analysis("all_wdpa_polybuffpnt","count_OWNTYPE",[["WDPAID","COUNT"]],"OWN_TYPE")
arcpy.Statistics_analysis("all_wdpa_polybuffpnt","count_DESIGENG",[["WDPAID","COUNT"]],"DESIG_ENG")
arcpy.Statistics_analysis("all_wdpa_polybuffpnt","count_DESIGTYPE",[["WDPAID","COUNT"]],"DESIG_TYPE")
arcpy.Statistics_analysis("all_wdpa_polybuffpnt","count_ISO3",[["WDPAID","COUNT"]],"WDPA_ISO3")
arcpy.Statistics_analysis("all_wdpa_polybuffpnt","count_STATUSYR",[["WDPAID","COUNT"]],"STATUS_YR")
arcpy.Statistics_analysis("all_wdpa_polybuffpnt","count_OWNTYPE",[["WDPAID","COUNT"]],"OWN_TYPE")
# calculate the no-take stats
arcpy.Select_analysis("all_wdpa_polybuffpnt", r"in_memory\notake_all","NO_TAKE = 'All'")
arcpy.Dissolve_management(r"in_memory\notake_all",r"in_memory\notake_all_diss")
arcpy.Project_management(r"in_memory\notake_all_diss","notakeall_diss_project",in_mollweideprj)
arcpy.AddGeometryAttributes_management("notakeall_diss_project","AREA_GEODESIC","","SQUARE_KILOMETERS",in_mollweideprj)
arcpy.Statistics_analysis("notakeall_diss_project","sum_NOTAKEall",[["AREA_GEO","SUM"]])
arcpy.Select_analysis("all_wdpa_polybuffpnt", r"in_memory\notake_part","NO_TAKE = 'Part'")
arcpy.Statistics_analysis(r"in_memory\notake_part","sum_NOTAKEpart",[["NO_TK_AREA","SUM"]])
elapsed_hours = (time.clock() - start)/3600
print(("Stage 1 took " + str(elapsed_hours) + " hours"))
##-------------------------------------------------------------------------------------------------------------------------
#Stage 2: National and National PAME analysis
print ("Stage 2 of 2: National & National PAME Analyses")
# create the summary tables for appending in individual natioanl summary statistics
out_national_current_schema = arcpy.CreateTable_management(workspace,"out_national_current_schema")
arcpy.AddFields_management(out_national_current_schema,[['WDPA_ISO3','TEXT'],['type','TEXT'],['FREQUENCY','LONG'],['SUM_AREA_GEO','DOUBLE']])
out_national_temporal_schema = arcpy.CreateTable_management(workspace,"out_national_temporal_schema")
arcpy.AddFields_management(out_national_temporal_schema,[['WDPA_ISO3','TEXT'],['MIN_STATUS_YR','DOUBLE'],['type','TEXT'],['FREQUENCY','LONG'],['SUM_AREA_GEO','DOUBLE']])
out_national_current_schema_pame = arcpy.CreateTable_management(workspace,"out_national_current_schema_pame")
arcpy.AddFields_management(out_national_current_schema_pame,[['WDPA_ISO3','TEXT'],['type','TEXT'],['FREQUENCY','LONG'],['SUM_AREA_GEO','DOUBLE']])
out_national_temporal_schema_pame = arcpy.CreateTable_management(workspace,"out_national_temporal_schema_pame")
arcpy.AddFields_management(out_national_temporal_schema_pame,[['WDPA_ISO3','TEXT'],['MIN_STATUS_YR','DOUBLE'],['type','TEXT'],['FREQUENCY','LONG'],['SUM_AREA_GEO','DOUBLE']])
# join pame list to polybuffpnt
arcpy.JoinField_management("all_wdpa_polybuffpnt","WDPAID",in_pame_sites,"wdpa_id","evaluation_id")
# update field (0) for those that don't have id
arcpy.CalculateField_management("all_wdpa_polybuffpnt","evaluation_id","updateValue(!evaluation_id!)","PYTHON_9.3", in_codeblock1)
# select transboundary sites and non transboundary sites
arcpy.Select_analysis("all_wdpa_polybuffpnt",r"in_memory\all_wdpa_polybuffpnt_nontransboundary","WDPA_ISO3 NOT LIKE '%;%'")
arcpy.Select_analysis("all_wdpa_polybuffpnt",r"in_memory\all_wdpa_polybuffpnt_transboundary","WDPA_ISO3 LIKE '%;%'")
# repair them
arcpy.RepairGeometry_management(r"in_memory\all_wdpa_polybuffpnt_nontransboundary","DELETE_NULL","OGC")
arcpy.RepairGeometry_management(r"in_memory\all_wdpa_polybuffpnt_transboundary","DELETE_NULL","OGC")
# erase the transboundary sites from the nontransboundary sites
arcpy.Erase_analysis(r"in_memory\all_wdpa_polybuffpnt_transboundary",r"in_memory\all_wdpa_polybuffpnt_nontransboundary","all_wdpa_polybuffpnt_transboundary_novelarea")
# repair the output of the erase
arcpy.RepairGeometry_management("all_wdpa_polybuffpnt_transboundary_novelarea","DELETE_NULL","OGC")
# intersect the erased output with the basemap
arcpy.PairwiseIntersect_analysis(["all_wdpa_polybuffpnt_transboundary_novelarea",in_basemap_spat],"all_wdpa_polybuffpnt_transboundary_novelarea_intersect")
# repair it
arcpy.RepairGeometry_management("all_wdpa_polybuffpnt_transboundary_novelarea_intersect","DELETE_NULL","OGC")
# recalculate ISO3 based on the geo iso3
arcpy.CalculateField_management("all_wdpa_polybuffpnt_transboundary_novelarea_intersect","WDPA_ISO3","!GEO_ISO3!","PYTHON_9.3")
# rename the nontransboundary sites
#arcpy.Rename_management(r"in_memory\all_wdpa_polybuffpnt_nontransboundary",r"in_memory\all_wdpa_polybuffpnt_national")
# append back the erased and intersected transboundary sites back into the nontransboundary sites
arcpy.Append_management(r"in_memory\all_wdpa_polybuffpnt_nontransboundary","all_wdpa_polybuffpnt_transboundary_novelarea_intersect","NO_TEST")
# repair it
arcpy.RepairGeometry_management(r"in_memory\all_wdpa_polybuffpnt_nontransboundary","DELETE_NULL","OGC")
# split by attribute (wdpa_iso3) to create an individual fc for each iso3
arcpy.SplitByAttributes_analysis(r"in_memory\all_wdpa_polybuffpnt_nontransboundary",sbafolder, "WDPA_ISO3")
# change the location of the workspace to represent the location of the sba output
arcpy.env.workspace = str(sbafolder)
arcpy.env.overwriteOutput = True
out_sba = arcpy.ListFeatureClasses()
# split the input into country specific subsets and do the analysis iso3 by iso3
for fc in out_sba:
desc = arcpy.Describe(fc)
# run a union, add in an xyco for each segment
arcpy.Union_analysis(fc,r"in_memory\Union")
arcpy.RepairGeometry_management(r"in_memory\union","DELETE_NULL","OGC")
# assign a unique id to each parcel (XYco)
arcpy.AddGeometryAttributes_management(r"in_memory\union","CENTROID")
arcpy.AddField_management(r"in_memory\union","XYco","TEXT")
arcpy.CalculateField_management(r"in_memory\union","XYco","str(!CENTROID_X!) + str(!CENTROID_Y!)","PYTHON_9.3")
# run two summary reports per parcel, working out the minimum STATUS_YR and the maximum evaluation_id (i.e. whether assessed or not)
arcpy.Statistics_analysis(r"in_memory\union",r"in_memory\out_styr_stats",[["STATUS_YR","MIN"]],"XYco")
arcpy.Statistics_analysis(r"in_memory\union",r"in_memory\out_assid_stats",[["evaluation_id","MAX"]],"XYco")
# delete identical (XYco) - (i.e. make it flat, removing intra-national overlaps), and repair it
arcpy.DeleteIdentical_management(r"in_memory\union","XYco")
arcpy.RepairGeometry_management(r"in_memory\union","DELETE_NULL","OGC")
# split it up further by intersecting each country with the basemap
arcpy.PairwiseIntersect_analysis([r"in_memory\union",in_basemap_spat],r"in_memory\intersect")
arcpy.RepairGeometry_management(r"in_memory\intersect","DELETE_NULL","OGC")
# add in the earliest designation date and whether it was assessed to each segment
arcpy.JoinField_management(r"in_memory\intersect","XYco",r"in_memory\out_styr_stats","XYco", 'MIN_STATUS_YR')
arcpy.JoinField_management(r"in_memory\intersect","XYco",r"in_memory\out_assid_stats","XYco", 'MAX_evaluation_id')
# project the output into mollweide
out_proj = desc.basename+"_union_intersect_project"
arcpy.Project_management(r"in_memory\intersect",out_proj,in_mollweideprj)
arcpy.RepairGeometry_management(out_proj,"DELETE_NULL","OGC")
arcpy.AddGeometryAttributes_management(out_proj,"AREA","","SQUARE_KILOMETERS",in_mollweideprj)
# for national reporting they can't report by ABNJ, so we treat areas in geographical ABNJ as actually being part of the ISO3's EEZ
arcpy.CalculateField_management(out_proj,"type","!type!.replace('ABNJ','EEZ')", 'PYTHON3')
# create national pa summary statistics
arcpy.Statistics_analysis(out_proj,r"in_memory\out_styr_sum_current",[["POLY_AREA","SUM"]],["WDPA_ISO3","type"])
out_styr_sum_temporal = desc.basename+"_summary"
arcpy.Statistics_analysis(out_proj,r"in_memory\out_styr_sum_temporal",[["POLY_AREA","SUM"]],["WDPA_ISO3","MIN_STATUS_YR","type"])
# pivot the national temporal pa summary
arcpy.PivotTable_management(r"in_memory\out_styr_sum_temporal",["WDPA_ISO3","MIN_STATUS_YR"],"type","SUM_POLY_AREA",r"in_memory\out_styr_sum_temporal_pivot")
# update current national field names (if they exist), replace <Null> with 0, add ABNJ area to EEZ field
if len(arcpy.ListFields(r"in_memory\out_styr_sum_temporal_pivot","WDPA_ISO3"))!=0:
arcpy.AlterField_management(r"in_memory\out_styr_sum_temporal_pivot","WDPA_ISO3","iso3")
if len(arcpy.ListFields(r"in_memory\out_styr_sum_temporal_pivot","MIN_STATUS_YR"))!=0:
arcpy.AlterField_management(r"in_memory\out_styr_sum_temporal_pivot","MIN_STATUS_YR","year")
if len(arcpy.ListFields(r"in_memory\out_styr_sum_temporal_pivot","Land"))!=0:
arcpy.AlterField_management(r"in_memory\out_styr_sum_temporal_pivot","Land","pa_land_area")
arcpy.CalculateField_management(r"in_memory\out_styr_sum_temporal_pivot","pa_land_area","updateValue(!pa_land_area!)","PYTHON_9.3", in_codeblock1)
if len(arcpy.ListFields(r"in_memory\out_styr_sum_temporal_pivot","EEZ"))!=0:
arcpy.AlterField_management(r"in_memory\out_styr_sum_temporal_pivot","EEZ","pa_marine_area")
arcpy.CalculateField_management(r"in_memory\out_styr_sum_temporal_pivot","pa_marine_area","updateValue(!pa_marine_area!)","PYTHON_9.3", in_codeblock1)
if len(arcpy.ListFields(r"in_memory\out_styr_sum_temporal_pivot","NET_POLY_AREA"))!=0:
arcpy.AddField_management(r"in_memory\out_styr_sum_temporal_pivot","pa_land_area_net_km2","LONG")
arcpy.CalculateField_management(r"in_memory\out_styr_sum_temporal_pivot","pa_land_area_net_km2","accumulate(!pa_land_area!)","PYTHON_9.3", in_codeblock2)
arcpy.AddField_management(r"in_memory\out_styr_sum_temporal_pivot","pa_marine_area_net_km2","LONG")
arcpy.CalculateField_management(r"in_memory\out_styr_sum_temporal_pivot","pa_marine_area_net_km2","accumulate(!pa_marine_area!)","PYTHON_9.3", in_codeblock2)
# append each of the national pa coverage tables into a clean precooked schema and all of the temporal pivot tables into another clean precooked schema
arcpy.Append_management(r"in_memory\out_styr_sum_current",out_national_current_schema,"NO_TEST")
arcpy.Append_management(r"in_memory\out_styr_sum_temporal",out_national_temporal_schema,"NO_TEST")
# select the areas where there has been a pame assessment to only run statistics on those areas
arcpy.Select_analysis(out_proj,r"in_memory\out_ass_sites","MAX_evaluation_id >= 1")
# create national pa PAME summary statistics
arcpy.Statistics_analysis(r"in_memory\out_ass_sites",r"in_memory\out_ass_sum_current",[["POLY_AREA","SUM"]],["WDPA_ISO3","type"])
arcpy.Statistics_analysis(r"in_memory\out_ass_sites",r"in_memory\out_ass_sum_temporal",[["POLY_AREA","SUM"]],["WDPA_ISO3","MIN_STATUS_YR","type"])
# append each of the national pa PAME coverage tables into a clean precooked schema and all of the temporal PAME data into another clean precooked schema
arcpy.Append_management(r"in_memory\out_ass_sum_current",out_national_current_schema_pame,"NO_TEST")
arcpy.Append_management(r"in_memory\out_ass_sum_temporal",out_national_temporal_schema_pame,"NO_TEST")
# delete the in_memory workspace before starting the next country
arcpy.Delete_management(r"in_memory")
# we now return back to the original workspace
arcpy.env.workspace = str(workspace)
# NATIONAL CURRENT REPORTS
# create summary tables for national status
# pivot the current national summary tables
arcpy.PivotTable_management(out_national_current_schema,"WDPA_ISO3","type","SUM_AREA_GEO","national_summary_statistics_current_pivot")
# rename fields
arcpy.AlterField_management("national_summary_statistics_current_pivot","WDPA_ISO3","iso3")
arcpy.AlterField_management("national_summary_statistics_current_pivot","Land","pa_land_area")
arcpy.AlterField_management("national_summary_statistics_current_pivot","EEZ","pa_marine_area")
# add the current national fields to calculate percentage coverage
arcpy.AddField_management("national_summary_statistics_current_pivot","percentage_pa_land_cover","FLOAT")
arcpy.AddField_management("national_summary_statistics_current_pivot","percentage_pa_marine_cover","FLOAT")
# join current national to the basemap
arcpy.JoinField_management("national_summary_statistics_current_pivot","iso3",in_basemap_tab,"GEO_ISO3",["land_area", "marine_area"])
# calculate current national fields and replace <Null> values with 0
arcpy.CalculateField_management("national_summary_statistics_current_pivot","percentage_pa_land_cover","(!pa_land_area! / !land_area!)*100","PYTHON_9.3")
arcpy.CalculateField_management("national_summary_statistics_current_pivot","percentage_pa_marine_cover","(!pa_marine_area! / !marine_area!)*100","PYTHON_9.3")
arcpy.CalculateField_management("national_summary_statistics_current_pivot","pa_land_area","updateValue(!percentage_pa_land_cover!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("national_summary_statistics_current_pivot","pa_marine_area","updateValue(!percentage_pa_marine_cover!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("national_summary_statistics_current_pivot","percentage_pa_land_cover","updateValue(!percentage_pa_land_cover!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("national_summary_statistics_current_pivot","percentage_pa_marine_cover","updateValue(!percentage_pa_marine_cover!)","PYTHON_9.3", in_codeblock1)
# pivot the current national pame summary tables
arcpy.PivotTable_management(out_national_current_schema_pame,"WDPA_ISO3","type","SUM_AREA_GEO","national_summary_statistics_current_pivot_pame")
# rename fields
arcpy.AlterField_management("national_summary_statistics_current_pivot_pame","WDPA_ISO3","iso3")
arcpy.AlterField_management("national_summary_statistics_current_pivot_pame","Land","pame_pa_land_area")
arcpy.AlterField_management("national_summary_statistics_current_pivot_pame","EEZ","pame_pa_marine_area")
# Join the current national pame table to the current natioanl table
arcpy.JoinField_management("national_summary_statistics_current_pivot","iso3","national_summary_statistics_current_pivot_pame","iso3",["pame_pa_land_area", "pame_pa_marine_area"])
# calculate pame percentage fields
arcpy.AddField_management("national_summary_statistics_current_pivot","pame_percentage_pa_land_cover","FLOAT")
arcpy.AddField_management("national_summary_statistics_current_pivot","pame_percentage_pa_marine_cover","FLOAT")
arcpy.CalculateField_management("national_summary_statistics_current_pivot","pame_percentage_pa_land_cover","(!pame_pa_land_area! / !land_area!)*100","PYTHON_9.3")
arcpy.CalculateField_management("national_summary_statistics_current_pivot","pame_percentage_pa_marine_cover","(!pame_pa_marine_area! / !marine_area!)*100","PYTHON_9.3")
# update all pame fields so that <Null> is replaced by 0
arcpy.CalculateField_management("national_summary_statistics_current_pivot","pame_pa_marine_area","updateValue(!pame_pa_marine_area!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("national_summary_statistics_current_pivot","pame_pa_land_area","updateValue(!pame_pa_land_area!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("national_summary_statistics_current_pivot","pame_percentage_pa_land_cover","updateValue(!pame_percentage_pa_land_cover!)","PYTHON_9.3", in_codeblock1)
arcpy.CalculateField_management("national_summary_statistics_current_pivot","pame_percentage_pa_marine_cover","updateValue(!pame_percentage_pa_marine_cover!)","PYTHON_9.3", in_codeblock1)
elapsed_minutes = (time.clock() - start)/60
elapsed_hours = (time.clock() - start)/3600
print ("scripts finished - all good")
print ("Outputs are here: " + str(workspace))
print ("Total running time: " + str(elapsed_minutes) + " minutes (" + str(elapsed_hours) + " hours)")
##### BELOW HERE IS A WORK IN PROGRESS AND HASHTAGGED OUT FOR NOW
# NATIONAL TEMPORAL REPORTS
# pivot the temporal national summary tables
#arcpy.PivotTable_management(out_national_temporal_schema,["WDPA_ISO3","MIN_STATUS_YR"],"type","SUM_AREA_GEO","national_summary_statistics_temporal_pivot")
# join temporal national to the basemap
#arcpy.JoinField_management("national_summary_statistics_temporal_pivot","WDPA_ISO3",in_basemap_tab,"GEO_ISO3",["land_area", "marine_area"])
# update the temporal national field names
#arcpy.AlterField_management("national_summary_statistics_temporal_pivot","WDPA_ISO3","iso3")
#arcpy.AlterField_management("national_summary_statistics_temporal_pivot","Land","pa_land_area")
#arcpy.AlterField_management("national_summary_statistics_temporal_pivot","EEZ","pa_marine_area")
#arcpy.AlterField_management("national_summary_statistics_temporal_pivot","MIN_STATUS_YR","year")
# update all the temporal natioanl fields so that they are 0 instead of Null
#arcpy.CalculateField_management("national_summary_statistics_temporal_pivot","pa_land_area","updateValue(!pa_land_area!)","PYTHON_9.3", in_codeblock1)
#arcpy.CalculateField_management("national_summary_statistics_temporal_pivot","pa_marine_area","updateValue(!pa_marine_area!)","PYTHON_9.3", in_codeblock1)
#arcpy.CalculateField_management("national_summary_statistics_temporal_pivot","percentage_pa_land_cover","updateValue(!percentage_pa_land_cover!)","PYTHON_9.3", in_codeblock1)
#arcpy.CalculateField_management("national_summary_statistics_temporal_pivot","percentage_pa_marine_cover","updateValue(!percentage_pa_marine_cover!)","PYTHON_9.3", in_codeblock1)
## UPDATE THE NET FIELD IN HERE TO REMOVE '0' VALUES?
# add the fields to calculate percentage coverage and calculate them
#arcpy.AddField_management("national_summary_statistics_temporal_pivot","percentage_pa_land_cover","FLOAT")
#arcpy.AddField_management("national_summary_statistics_temporal_pivot","percentage_pa_marine_cover","FLOAT")
#arcpy.CalculateField_management("national_summary_statistics_temporal_pivot","percentage_pa_land_cover","(!pa_land_area! / !land_area!)*100","PYTHON_9.3")
#arcpy.CalculateField_management("national_summary_statistics_temporal_pivot","percentage_pa_marine_cover","(!pa_marine_area! / !marine_area!)*100","PYTHON_9.3")
# add in net fields and calculate them
#arcpy.AddField_management("national_summary_statistics_temporal_pivot","pa_marine_cover_net_km2","LONG")
#arcpy.CalculateField_management("national_summary_statistics_temporal_pivot","pa_marine_area_net_km2","updateValue(!pa_marine_area_net_km2!)","PYTHON_9.3", in_codeblock1)
#arcpy.AddField_management("national_summary_statistics_temporal_pivot","pa_land_cover_net_km2","LONG")
#arcpy.CalculateField_management("national_summary_statistics_temporal_pivot","pa_land_area_net_km2","updateValue(!pa_land_area_net_km2!)","PYTHON_9.3", in_codeblock1)
#arcpy.AddField_management("national_summary_statistics_temporal_pivot","pa_marine_cover_net_perc","LONG")
#arcpy.CalculateField_management("national_summary_statistics_temporal_pivot","pa_marine_cover_net_perc","(!pa_marine_area_net_km2! / !marine_area!)*100","PYTHON_9.3")
#arcpy.AddField_management("national_summary_statistics_temporal_pivot","pa_land_cover_net_perc","LONG")
#arcpy.CalculateField_management("national_summary_statistics_temporal_pivot","pa_land_cover_net_perc","(!pa_land_area_net_km2! / !land_area!)*100","PYTHON_9.3")
# Finish running scripts
#----------------------------------------------------------------------------------------------------------------------