forked from wmcnicho/Neurips-Challenge-22
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstruct_solution.py
155 lines (127 loc) · 6.26 KB
/
construct_solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import argparse
import json
import numpy as np
import torch
import argparse
import pandas as pd
from predict_graph import PermutedDKT, PermutationMatrix, PermutedGru
import os
import shutil
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_sinkhorn_output(matrix, temperature, unroll):
matrix_shape = matrix.shape[0]
max_row = torch.max(matrix, dim=1).values.reshape(matrix_shape, 1)
ones = torch.ones(matrix_shape, device=device).reshape(1, matrix_shape)
matrix = torch.exp(temperature * (matrix - torch.matmul(max_row, ones)))
for _ in range(unroll):
matrix = matrix / torch.sum(matrix, dim=1, keepdim=True)
matrix = matrix / torch.sum(matrix, dim=0, keepdim=True)
return matrix
def search_argmax(matrix):
taken_indices = {}
index_lst = []
for row in matrix:
val_index_pair = {k:i for i, k in enumerate(row)}
val_index_sorted = sorted(val_index_pair.items(), reverse=True)
for val, index in val_index_sorted:
try:
res = taken_indices[index]
except KeyError:
index_lst.append(index)
taken_indices[index] = 1
break
return index_lst
def main():
parser = argparse.ArgumentParser(description='UMass 2022 casual ordering submission script')
parser.add_argument('-f', '--file_name', type=str, default='final_10_22_20_25_44_batch_3_epoch_5_embed_3', help='Model file from training without file extension')
parser.add_argument('-V', '--verbose', action=argparse.BooleanOptionalAction, help='Controls amount of printing')
parser.add_argument('-D', '--debug', action=argparse.BooleanOptionalAction, help='Controls whether intermediate files are created during submission construction')
parser.add_argument('-T', '--temperature', type=int, default=2, help='temperature of learned model')
parser.add_argument('-U', '--unroll', type=int, default=5, help='unroll length of learned model')
parser.add_argument('-L', '--tau', type=float, default=0.45, help='threshold for L matrix')
options = parser.parse_args()
if device == torch.device('cpu'):
model_load = torch.load(f'saved_models/{options.file_name}.pt', map_location=torch.device('cpu'))
else:
model_load = torch.load(f'saved_models/{options.file_name}.pt')
try:
p_matrix = model_load.gru.permuted_matrix.matrix
l_matrix = model_load.gru.permuted_matrix.lower
except:
p_matrix = model_load.module.gru.permuted_matrix.matrix
l_matrix = model_load.module.gru.permuted_matrix.lower
sinkhorn_output = get_sinkhorn_output(p_matrix, options.temperature, options.unroll)
l_mask = torch.tril(torch.ones(l_matrix.shape[0], l_matrix.shape[1]))
sigmoid_output = torch.sigmoid(l_matrix) * l_mask
np_p_matrix = sinkhorn_output.cpu().detach().numpy()
np_l_matrix = sigmoid_output.cpu().detach().numpy()
np.set_printoptions(threshold=np.inf)
if options.verbose:
print("Trained L bar matrix: ", l_matrix)
print("========="*10)
print("L matrix: ", np_l_matrix)
if options.debug:
np.save(f'./submissions/byproducts/sinkhorn_p_matrix_{options.file_name}.npy', np_p_matrix)
np.save(f'./submissions/byproducts/l_matrix_{options.file_name}.npy', np_l_matrix)
argmax_search = search_argmax(np_p_matrix)
if options.verbose:
argmax_list_row = np.argmax(np_p_matrix, axis=1)
argmax_list_col = np.argmax(np_p_matrix, axis=0)
print('P Matrix by row', len(set(argmax_list_row)))
print('P Matrix by col', len(set(argmax_list_col)))
p_matrix = np.zeros(np_p_matrix.shape)
for row, col in enumerate(argmax_search):
p_matrix[row][col] = 1
l_matrix = np.zeros(np_l_matrix.shape)
max_element = 0
min_element = 1
for i in range(np_l_matrix.shape[0]):
for j in range(np_l_matrix.shape[1]):
if i > j:
if np_l_matrix[i][j] > max_element:
max_element = np_l_matrix[i][j]
elif np_l_matrix[i][j] < min_element:
min_element = np_l_matrix[i][j]
elif i == j:
np_l_matrix[i][j] = 1
if options.verbose:
print("Max element of L bar matrix: ", max_element)
print("Min element of L bar matrix: ", min_element)
l_matrix = (np_l_matrix > float(options.tau)).astype(float)
if options.verbose:
print("========="*10)
print("Thresholded L matrix: ", l_matrix)
if options.debug:
np.save(f'./submissions/byproducts/threshold_{options.tau}_l_matrix_{options.file_name}.npy', l_matrix) # NOTE: thresholded l-matrix
np.save(f'./submissions/byproducts/p_matrix_{options.file_name}.npy', p_matrix)
p_matrix = np.load(f'./submissions/byproducts/p_matrix_{options.file_name}.npy') # NOTE: assuming perfect p-matrix
# Read construct list
with open("./serialized_torch/student_data_construct_list.json", 'rb') as fp:
tot_construct_list = json.load(fp)
tot_construct_list.append(0) # 0 is the padding construct
if options.verbose:
print('Original construct list', tot_construct_list)
construct_arr = np.array(tot_construct_list)
# Get construct ordering
construct_order = np.dot(p_matrix, construct_arr)
construct_order_lst = construct_order.tolist()
if options.verbose:
print(construct_order_lst)
# Read test data
test_constructs = pd.read_csv('./data/Task_3_dataset/constructs_input_test.csv')['ConstructId'].tolist()
solution_adj_matrix = np.zeros(shape=(len(test_constructs), len(test_constructs)))
for i, row_cons in enumerate(test_constructs):
row_pos = construct_order_lst.index(row_cons)
for j, col_cons in enumerate(test_constructs):
col_pos = construct_order_lst.index(col_cons)
solution_adj_matrix[i][j] = l_matrix[row_pos][col_pos]
solution_adj_matrix_arr = np.array(solution_adj_matrix).astype(int)
directory = f"tau_{options.tau}"
parent_dir = "./submissions/"
path = os.path.join(parent_dir, directory)
os.mkdir(path, 0o755)
np.save(f'{path}/adj_matrix.npy', solution_adj_matrix_arr)
shutil.make_archive(f'tau_{options.tau}', format='zip', root_dir=path)
if __name__ == "__main__":
main()