forked from anlausch/XWEAT
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathweat.py
651 lines (551 loc) · 29.4 KB
/
weat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
import numpy as np
import random
from itertools import filterfalse
from itertools import combinations
import codecs
import utils
import os
import pickle
import logging
import argparse
import time
from collections import OrderedDict
import math
from sklearn.metrics.pairwise import euclidean_distances
class XWEAT(object):
"""
Perform WEAT (Word Embedding Association Test) bias tests on a language model.
Follows from Caliskan et al 2017 (10.1126/science.aal4230).
Credits: Basic implementation based on https://gist.github.com/SandyRogers/e5c2e938502a75dcae25216e4fae2da5
"""
def __init__(self):
self.embd_dict = None
self.vocab = None
self.embedding_matrix = None
def set_embd_dict(self, embd_dict):
self.embd_dict = embd_dict
def _build_vocab_dict(self, vocab):
self.vocab = OrderedDict()
vocab = set(vocab)
index = 0
for term in vocab:
if term in self.embd_dict:
self.vocab[term] = index
index += 1
else:
logging.warning("Not in vocab %s", term)
def convert_by_vocab(self, items):
"""Converts a sequence of [tokens|ids] using the vocab."""
output = []
for item in items:
if item in self.vocab:
output.append(self.vocab[item])
else:
continue
return output
def _build_embedding_matrix(self):
self.embedding_matrix = []
for term, index in self.vocab.items():
if term in self.embd_dict:
self.embedding_matrix.append(self.embd_dict[term])
else:
raise AssertionError("This should not happen.")
self.embd_dict = None
def mat_normalize(self,mat, norm_order=2, axis=1):
return mat / np.transpose([np.linalg.norm(mat, norm_order, axis)])
def cosine(self, a, b):
norm_a = self.mat_normalize(a)
norm_b = self.mat_normalize(b)
cos = np.dot(norm_a, np.transpose(norm_b))
return cos
def euclidean(self, a, b):
norm_a = self.mat_normalize(a)
norm_b = self.mat_normalize(b)
distances = euclidean_distances(norm_a, norm_b)
eucl = 1/ (1+distances)
return eucl
def csls(self, a, b, k=10):
norm_a = self.mat_normalize(a)
norm_b = self.mat_normalize(b)
sims_local_a = np.dot(norm_a, np.transpose(norm_a))
sims_local_b = np.dot(norm_b, np.transpose(norm_b))
csls_norms_a = np.mean(np.sort(sims_local_a, axis=1)[:, -k - 1:-1], axis=1)
csls_norms_b = np.mean(np.sort(sims_local_b, axis=1)[:, -k - 1:-1], axis=1)
loc_sims = np.add(np.transpose(np.tile(csls_norms_a, (len(csls_norms_b), 1))),
np.tile(csls_norms_b, (len(csls_norms_a), 1)))
return 2 * np.dot(norm_a, np.transpose(norm_b)) - loc_sims
def _init_similarities(self, similarity_type):
if similarity_type == "cosine":
self.similarities = self.cosine(self.embedding_matrix, self.embedding_matrix)
elif similarity_type == "csls":
self.similarities = self.csls(self.embedding_matrix, self.embedding_matrix)
elif similarity_type == "euclidean":
self.similarities = self.euclidean(self.embedding_matrix, self.embedding_matrix)
else:
raise NotImplementedError()
def weat_1(self):
"""
WEAT 1 (universally accepted): Targets 1=Flowers, Targets 2=Insects, Attributes 1=pleasant, Attributes 2=unpleasant
:return: targets_1, targets_2, attributes_1, attributes_2
"""
targets_1 = ["aster", "clover", "hyacinth", "marigold", "poppy", "azalea", "crocus", "iris", "orchid", "rose",
"blue-bell", "daffodil", "lilac", "pansy", "tulip", "buttercup", "daisy", "lily", "peony", "violet",
"carnation", "gladiola", "magnolia", "petunia", "zinnia"]
targets_2 = ["ant", "caterpillar", "flea", "locust", "spider", "bedbug", "centipede", "fly", "maggot", "tarantula",
"bee", "cockroach", "gnat", "mosquito", "termite", "beetle", "cricket", "hornet", "moth", "wasp",
"blackfly",
"dragonfly", "horsefly", "roach", "weevil"]
attributes_1 = ["caress", "freedom", "health", "love", "peace", "cheer", "friend", "heaven", "loyal", "pleasure",
"diamond", "gentle", "honest", "lucky", "rainbow", "diploma", "gift", "honor", "miracle", "sunrise",
"family",
"happy", "laughter", "paradise", "vacation"]
attributes_2 = ["abuse", "crash", "filth", "murder", "sickness", "accident", "death", "grief", "poison", "stink",
"assault", "disaster", "hatred", "pollute", "tragedy", "divorce", "jail", "poverty", "ugly", "cancer",
"kill", "rotten",
"vomit", "agony", "prison"]
return targets_1, targets_2, attributes_1, attributes_2
# WEAT 2: Target 1=Musical instruments, Target 2= Weapons, Attributes 1: pleasant, Attributes 2=unpleasant
def weat_2(self):
targets_1 = ["bagpipe", "cello", "guitar", "lute", "trombone", "banjo", "clarinet", "harmonica", "mandolin",
"trumpet", "bassoon", "drum", "harp", "oboe", "tuba", "bell", "fiddle", "harpsichord", "piano",
"viola", "bongo",
"flute", "horn", "saxophone", "violin"]
targets_2 = ["arrow", "club", "gun", "missile", "spear", "axe", "dagger", "harpoon", "pistol", "sword", "blade",
"dynamite", "hatchet", "rifle", "tank", "bomb", "firearm", "knife", "shotgun", "teargas", "cannon",
"grenade",
"mace", "slingshot", "whip"]
attributes_1 = ["caress", "freedom", "health", "love", "peace", "cheer", "friend", "heaven", "loyal", "pleasure",
"diamond", "gentle", "honest", "lucky", "rainbow", "diploma", "gift", "honor", "miracle", "sunrise",
"family", "happy", "laughter", "paradise", "vacation"]
attributes_2 = ["abuse", "crash", "filth", "murder", "sickness", "accident", "death", "grief", "poison", "stink",
"assault", "disaster", "hatred", "pollute", "tragedy", "divorce", "jail", "poverty", "ugly", "cancer",
"kill", "rotten",
"vomit", "agony", "prison"]
return targets_1, targets_2, attributes_1, attributes_2
# Here they deleted the infrequent african american names, and the same number randomly choosen from the european american names
def weat_3(self):
# excluded in the original paper: Chip, Ian, Fred, Jed, Todd, Brandon, Wilbur, Sara, Amber, Crystal, Meredith, Shannon, Donna,
# Bobbie-Sue, Peggy, Sue-Ellen, Wendy
targets_1 = ["Adam", "Harry", "Josh", "Roger", "Alan", "Frank", "Justin", "Ryan", "Andrew", "Jack", "Matthew", "Stephen",
"Brad", "Greg", "Paul", "Hank", "Jonathan", "Peter", "Amanda", "Courtney", "Heather", "Melanie",
"Katie", "Betsy", "Kristin", "Nancy", "Stephanie", "Ellen", "Lauren", "Colleen", "Emily", "Megan", "Rachel",
"Chip", "Ian", "Fred", "Jed", "Todd", "Brandon", "Wilbur", "Sara", "Amber", "Crystal", "Meredith", "Shannon",
"Donna", "Bobbie-Sue", "Peggy", "Sue-Ellen", "Wendy"]
# excluded: Lerone, Percell, Rasaan, Rashaun, Everol, Terryl, Aiesha, Lashelle, Temeka, Tameisha, Teretha, Latonya, Shanise,
# Sharise, Tashika, Lashandra, Shavonn, Tawanda,
targets_2 = ["Alonzo", "Jamel", "Theo", "Alphonse", "Jerome", "Leroy", "Torrance", "Darnell", "Lamar", "Lionel",
"Tyree", "Deion", "Lamont", "Malik", "Terrence", "Tyrone", "Lavon", "Marcellus", "Wardell", "Nichelle",
"Shereen", "Ebony", "Latisha", "Shaniqua", "Jasmine", "Tanisha", "Tia", "Lakisha", "Latoya", "Yolanda",
"Malika", "Yvette", "Lerone", "Percell", "Rasaan", "Rashaun", "Everol", "Terryl", "Aiesha", "Lashelle",
"Temeka", "Tameisha", "Teretha", "Latonya", "Shanise", "Sharise", "Tashika", "Lashandra", "Shavonn", "Tawanda"]
attributes_1 = ["caress", "freedom", "health", "love", "peace", "cheer", "friend", "heaven", "loyal", "pleasure",
"diamond", "gentle", "honest", "lucky", "rainbow", "diploma", "gift", "honor", "miracle", "sunrise",
"family", "happy", "laughter", "paradise", "vacation"]
# same as before but agony and prison are replaced with bomb and evil
attributes_2 = ["abuse", "crash", "filth", "murder", "sickness", "accident", "death", "grief", "poison", "stink",
"assault", "disaster", "hatred", "pollute", "tragedy", "divorce", "jail", "poverty", "ugly", "cancer",
"kill", "rotten",
"vomit", "bomb", "evil"]
return targets_1, targets_2, attributes_1, attributes_2
# again: african american names vs. european american names and pleasant vs unpleasant but with different names
def weat_4(self):
# excluded as in the original paper: Jay, Kristen, (here only excluded in the glove experiments)
targets_1 = ["Brad", "Brendan", "Geoffrey", "Greg", "Brett", "Matthew", "Neil", "Todd", "Allison", "Anne",
"Carrie", "Emily", "Jill", "Laurie", "Meredith", "Sarah", "Jay", "Kristen"]
# excluded in GloVe experiments: Tremayne, Latonya,
targets_2 = ["Darnell", "Hakim", "Jermaine", "Kareem", "Jamal", "Leroy", "Rasheed", "Tyrone", "Aisha", "Ebony",
"Keisha", "Kenya", "Lakisha", "Latoya", "Tamika", "Tanisha", "Tremayne", "Latonya"]
attributes_1 = ["caress", "freedom", "health", "love", "peace", "cheer", "friend", "heaven", "loyal", "pleasure",
"diamond", "gentle", "honest", "lucky", "rainbow", "diploma", "gift", "honor", "miracle", "sunrise",
"family", "happy", "laughter", "paradise", "vacation"]
# same as before but agony and prison are replaced with bomb and evil
attributes_2 = ["abuse", "crash", "filth", "murder", "sickness", "accident", "death", "grief", "poison", "stink",
"assault", "disaster", "hatred", "pollute", "tragedy", "divorce", "jail", "poverty", "ugly",
"cancer",
"kill", "rotten",
"vomit", "bomb", "evil"]
return targets_1, targets_2, attributes_1, attributes_2
# again african american vs european american names, but with different attributes
def weat_5(self):
# excluded as in the original paper: Jay, Kristen, (here only excluded in the glove experiments)
targets_1 = ["Brad", "Brendan", "Geoffrey", "Greg", "Brett", "Matthew", "Neil", "Todd", "Allison", "Anne",
"Carrie", "Emily", "Jill", "Laurie", "Meredith", "Sarah", "Jay", "Kristen"]
# excluded in GloVe experiments: Tremayne, Latonya,
targets_2 = ["Darnell", "Hakim", "Jermaine", "Kareem", "Jamal", "Leroy", "Rasheed", "Tyrone", "Aisha", "Ebony",
"Keisha", "Kenya", "Lakisha", "Latoya", "Tamika", "Tanisha", "Tremayne", "Latonya"]
attributes_1 = ["joy", "love", "peace", "wonderful", "pleasure", "friend", "laughter", "happy"]
attributes_2 = ["agony", "terrible", "horrible", "nasty", "evil", "war", "awful", "failure"]
return targets_1, targets_2, attributes_1, attributes_2
# sex- career
def weat_6(self):
targets_1 = ["John", "Paul", "Mike", "Kevin", "Steve", "Greg", "Jeff", "Bill"]
targets_2 = ["Amy", "Joan", "Lisa", "Sarah", "Diana", "Kate", "Ann", "Donna"]
attributes_1 = ["executive", "management", "professional", "corporation", "salary", "office", "business", "career"]
attributes_2 = ["home", "parents", "children", "family", "cousins", "marriage", "wedding", "relatives"]
return targets_1, targets_2, attributes_1, attributes_2
# sex - math
def weat_7(self):
targets_1 = ["math", "algebra", "geometry", "calculus", "equations", "computation", "numbers", "addition"]
targets_2 = ["poetry", "art", "dance", "literature", "novel", "symphony", "drama", "sculpture"]
attributes_1 = ["male", "man", "boy", "brother", "he", "him", "his", "son"]
attributes_2 = ["female", "woman", "girl", "sister", "she", "her", "hers", "daughter"]
return targets_1, targets_2, attributes_1, attributes_2
# sex - science
def weat_8(self):
targets_1 = ["science", "technology", "physics", "chemistry", "Einstein", "NASA", "experiment", "astronomy"]
targets_2 = ["poetry", "art", "Shakespeare", "dance", "literature", "novel", "symphony", "drama"]
attributes_1 = ["brother", "father", "uncle", "grandfather", "son", "he", "his", "him"]
attributes_2 = ["sister", "mother", "aunt", "grandmother", "daughter", "she", "hers", "her"]
return targets_1, targets_2, attributes_1, attributes_2
# desease - uncontrollability
def weat_9(self):
targets_1 = ["sad", "hopeless", "gloomy", "tearful", "miserable", "depressed"]
targets_2 = ["sick", "illness", "influenza", "disease", "virus", "cancer"]
# in w2v experiments, the've replaced short-term with short
attributes_1 = ["impermanent", "unstable", "variable", "fleeting", "short-term", "brief", "occasional"]
attributes_2 = ["stable", "always", "constant", "persistent", "chronic", "prolonged", "forever"]
return targets_1, targets_2, attributes_1, attributes_2
# old - pleasant
def weat_10(self):
targets_1 = ["Tiffany", "Michelle", "Cindy", "Kristy", "Brad", "Eric", "Joey", "Billy"]
targets_2 = ["Ethel", "Bernice", "Gertrude", "Agnes", "Cecil", "Wilbert", "Mortimer", "Edgar"]
attributes_1 = ["joy", "love", "peace", "wonderful", "pleasure", "friend", "laughter", "happy"]
attributes_2 = ["agony", "terrible", "horrible", "nasty", "evil", "war", "awful", "failure"]
return targets_1, targets_2, attributes_1, attributes_2
# missing from the original IAT: arab-muslim
# occupations
def wefat_1(self):
# occupations derived from th bureau of labor statistics
targets = ["technician", "accountant", "supervisor", "engineer", "worker", "educator", "clerk", "counselor", "inspector",
"mechanic", "manager", "therapist", "administrator", "salesperson", "receptionist", "librarian", "advisor", "pharmacist",
"janitor", "psychologist", "physician", "carpenter", "nurse", "investigator", "bartender", "specialist", "electrician",
"officer", "pathologist", "teacher", "lawyer", "planner", "practitioner", "plumber", "instructor",
"surgeon", "veterinarian", "paramedic",
"examiner", "chemist", "machinist", "appraiser", "nutritionist", "architect", "hairdresser", "baker",
"programmer", "paralegal", "hygienist", "scientist"]
attributes_1 = ["male", "man", "boy", "brother", "he", "him", "his", "son"]
attributes_2 = ["female", "woman", "girl", "sister", "she", "her", "hers", "daughter"]
return targets, attributes_1, attributes_2
# androgynous names
def wefat_2(self):
targets = ["Kelly", "Tracy", "Jamie", "Jackie", "Jesse", "Courtney", "Lynn", "Taylor", "Leslie", "Shannon",
"Stacey", "Jessie", "Shawn", "Stacy", "Casey", "Bobby", "Terry", "Lee", "Ashley", "Eddie", "Chris", "Jody", "Pat",
"Carey", "Willie", "Morgan", "Robbie", "Joan", "Alexis", "Kris", "Frankie", "Bobbie", "Dale", "Robin", "Billie",
"Adrian", "Kim", "Jaime", "Jean", "Francis", "Marion", "Dana", "Rene", "Johnnie", "Jordan", "Carmen", "Ollie",
"Dominique", "Jimmie", "Shelby"]
attributes_1 = ["male", "man", "boy", "brother", "he", "him", "his", "son"]
attributes_2 = ["female", "woman", "girl", "sister", "she", "her", "hers", "daughter"]
return targets, attributes_1, attributes_2
def similarity_precomputed_sims(self, w1, w2, type="cosine"):
return self.similarities[w1, w2]
def word_association_with_attribute_precomputed_sims(self, w, A, B):
return np.mean([self.similarity_precomputed_sims(w, a) for a in A]) - np.mean([self.similarity_precomputed_sims(w, b) for b in B])
def differential_association_precomputed_sims(self, T1, T2, A1, A2):
return np.sum([self.word_association_with_attribute_precomputed_sims(t1, A1, A2) for t1 in T1]) \
- np.sum([self.word_association_with_attribute_precomputed_sims(t2, A1, A2) for t2 in T2])
def weat_effect_size_precomputed_sims(self, T1, T2, A1, A2):
return (
np.mean([self.word_association_with_attribute_precomputed_sims(t1, A1, A2) for t1 in T1]) -
np.mean([self.word_association_with_attribute_precomputed_sims(t2, A1, A2) for t2 in T2])
) / np.std([self.word_association_with_attribute_precomputed_sims(w, A1, A2) for w in T1 + T2])
def _random_permutation(self, iterable, r=None):
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(random.sample(pool, r))
def weat_p_value_precomputed_sims(self, T1, T2, A1, A2, sample):
logging.info("Calculating p value ... ")
size_of_permutation = min(len(T1), len(T2))
T1_T2 = T1 + T2
observed_test_stats_over_permutations = []
total_possible_permutations = math.factorial(len(T1_T2)) / math.factorial(size_of_permutation) / math.factorial((len(T1_T2)-size_of_permutation))
logging.info("Number of possible permutations: %d", total_possible_permutations)
if not sample or sample >= total_possible_permutations:
permutations = combinations(T1_T2, size_of_permutation)
else:
logging.info("Computing randomly first %d permutations", sample)
permutations = set()
while len(permutations) < sample:
permutations.add(tuple(sorted(self._random_permutation(T1_T2, size_of_permutation))))
for Xi in permutations:
Yi = filterfalse(lambda w: w in Xi, T1_T2)
observed_test_stats_over_permutations.append(self.differential_association_precomputed_sims(Xi, Yi, A1, A2))
if len(observed_test_stats_over_permutations) % 100000 == 0:
logging.info("Iteration %s finished", str(len(observed_test_stats_over_permutations)))
unperturbed = self.differential_association_precomputed_sims(T1, T2, A1, A2)
is_over = np.array([o > unperturbed for o in observed_test_stats_over_permutations])
return is_over.sum() / is_over.size
def weat_stats_precomputed_sims(self, T1, T2, A1, A2, sample_p=None):
test_statistic = self.differential_association_precomputed_sims(T1, T2, A1, A2)
effect_size = self.weat_effect_size_precomputed_sims(T1, T2, A1, A2)
p = self.weat_p_value_precomputed_sims(T1, T2, A1, A2, sample=sample_p)
return test_statistic, effect_size, p
def _create_vocab(self):
"""
>>> weat = XWEAT(None); weat._create_vocab()
:return: all
"""
all = []
for i in range(1, 10):
t1, t2, a1, a2 = getattr(self, "weat_" + str(i))()
all = all + t1 + t2 + a1 + a2
for i in range(1, 2):
t1, a1, a2 = getattr(self, "wefat_" + str(i))()
all = all + t1 + a1 + a2
all = set(all)
return all
def _output_vocab(self, path="./data/vocab_en.txt"):
"""
>>> weat = XWEAT(None); weat._output_vocab()
"""
vocab = self._create_vocab()
with codecs.open(path, "w", "utf8") as f:
for w in vocab:
f.write(w)
f.write("\n")
f.close()
def run_test_precomputed_sims(self, target_1, target_2, attributes_1, attributes_2, sample_p=None, similarity_type="cosine"):
"""Run the WEAT test for differential association between two
sets of target words and two sets of attributes.
RETURNS:
(d, e, p). A tuple of floats, where d is the WEAT Test statistic,
e is the effect size, and p is the one-sided p-value measuring the
(un)likeliness of the null hypothesis (which is that there is no
difference in association between the two target word sets and
the attributes).
If e is large and p small, then differences in the model between
the attribute word sets match differences between the targets.
"""
vocab = target_1 + target_2 + attributes_1 + attributes_2
self._build_vocab_dict(vocab)
T1 = self.convert_by_vocab(target_1)
T2 = self.convert_by_vocab(target_2)
A1 = self.convert_by_vocab(attributes_1)
A2 = self.convert_by_vocab(attributes_2)
while len(T1) < len(T2):
logging.info("Popped T2 %d", T2[-1])
T2.pop(-1)
while len(T2) < len(T1):
logging.info("Popped T1 %d", T1[-1])
T1.pop(-1)
while len(A1) < len(A2):
logging.info("Popped A2 %d", A2[-1])
A2.pop(-1)
while len(A2) < len(A1):
logging.info("Popped A1 %d", A1[-1])
A1.pop(-1)
assert len(T1)==len(T2)
assert len(A1) == len(A2)
self._build_embedding_matrix()
self._init_similarities(similarity_type)
return self.weat_stats_precomputed_sims(T1, T2, A1, A2, sample_p)
def _parse_translations(self, path="./data/vocab_en_de.csv", new_path="./data/vocab_dict_en_de.p", is_russian=False):
"""
:param path: path of the csv file edited by our translators
:param new_path: path of the clean dict to save
>>> XWEAT()._parse_translations(is_russian=False)
293
"""
# This code probably does not work for the russian code, as dmitry did use other columns for his corrections
with codecs.open(path, "r", "utf8") as f:
translation_dict = {}
for line in f.readlines():
parts = line.split(",")
en = parts[0]
if en == "" or en[0].isupper():
continue
else:
if is_russian and parts[3] != "\n" and parts[3] != "\r\n" and parts[3] != "\r":
other_m = parts[2]
other_f = parts[3].strip()
translation_dict[en] = (other_m, other_f)
else:
other_m = parts[1].strip()
other_f = None
if len(parts) > 2 and parts[2] != "\n" and parts[2] != "\r\n" and parts[2] != "\r" and parts[2] != '':
other_f = parts[2].strip()
translation_dict[en] = (other_m, other_f)
pickle.dump(translation_dict, open(new_path, "wb"))
return len(translation_dict)
def load_vocab_goran(path):
return pickle.load(open(path, "rb"))
def load_vectors_goran(path):
return np.load(path)
def load_embedding_dict(vocab_path="", vector_path="", embeddings_path="", glove=False, postspec=False):
"""
>>> _load_embedding_dict()
:param vocab_path:
:param vector_path:
:return: embd_dict
"""
if glove and postspec:
raise ValueError("Glove and postspec cannot both be true")
elif glove:
if os.name == "nt":
embd_dict = utils.load_embeddings("C:/Users/anlausch/workspace/embedding_files/glove.6B/glove.6B.300d.txt",
word2vec=False)
else:
embd_dict = utils.load_embeddings("/work/anlausch/glove.6B.300d.txt", word2vec=False)
return embd_dict
elif postspec:
embd_dict_temp = utils.load_embeddings("/work/anlausch/ft_postspec.txt", word2vec=False)
embd_dict = {}
for key, value in embd_dict_temp.items():
embd_dict[key.split("en_")[1]] = value
assert("test" in embd_dict)
assert ("house" in embd_dict)
return embd_dict
elif embeddings_path != "":
embd_dict = utils.load_embeddings(embeddings_path, word2vec=False)
return embd_dict
else:
embd_dict = {}
vocab = load_vocab_goran(vocab_path)
vectors = load_vectors_goran(vector_path)
for term, index in vocab.items():
embd_dict[term] = vectors[index]
assert len(embd_dict) == len(vocab)
return embd_dict
def translate(translation_dict, terms):
translation = []
for t in terms:
if t in translation_dict or t.lower() in translation_dict:
if t.lower() in translation_dict:
male, female = translation_dict[t.lower()]
elif t in translation_dict:
male, female = translation_dict[t]
if female is None or female is '':
translation.append(male)
else:
translation.append(male)
translation.append(female)
else:
translation.append(t)
translation = list(set(translation))
return translation
def compute_oov_percentage():
"""
>>> compute_oov_percentage()
:return:
"""
with codecs.open("./results/oov_short.txt", "w", "utf8") as f:
for test in range(1,11):
f.write("Test %d \n" % test)
targets_1, targets_2, attributes_1, attributes_2 = XWEAT().__getattribute__("weat_" + str(test))()
vocab = targets_1 + targets_2 + attributes_1 + attributes_2
vocab = [t.lower() for t in vocab]
#f.write("English vocab: %s \n" % str(vocab))
for language in ["en", "es", "de", "tr", "ru", "hr", "it"]:
if language != "en":
#f.write("Translating terms from en to %s\n" % language)
translation_dict = load_vocab_goran("./data/vocab_dict_en_" + language + ".p")
vocab_translated = translate(translation_dict, vocab)
vocab_translated = [t.lower() for t in vocab_translated]
#f.write("Translated terms %s\n" % str(vocab))
embd_dict = load_embedding_dict(vocab_path="/work/gglavas/data/word_embs/yacle/fasttext/200K/npformat/ft.wiki."+language+".300.vocab", vector_path="/work/gglavas/data/word_embs/yacle/fasttext/200K/npformat/ft.wiki."+language+".300.vectors")
ins=[]
not_ins=[]
if language != "en":
for term in vocab_translated:
if term in embd_dict:
ins.append(term)
else:
not_ins.append(term)
else:
for term in vocab:
if term in embd_dict:
ins.append(term)
else:
not_ins.append(term)
#f.write("OOVs: %s\n" % str(not_ins))
f.write("OOV Percentage for language %s: %s\n" % (language, (len(not_ins)/len(vocab))))
f.write("\n")
f.close()
def main():
def boolean_string(s):
if s not in {'False', 'True', 'false', 'true'}:
raise ValueError('Not a valid boolean string')
return s == 'True' or s == 'true'
parser = argparse.ArgumentParser(description="Running XWEAT")
parser.add_argument("--test_number", type=int, help="Number of the weat test to run", required=False)
parser.add_argument("--permutation_number", type=int, default=None,
help="Number of permutations (otherwise all will be run)", required=False)
parser.add_argument("--output_file", type=str, default=None, help="File to store the results)", required=False)
parser.add_argument("--lower", type=boolean_string, default=False, help="Whether to lower the vocab", required=True)
parser.add_argument("--similarity_type", type=str, default="cosine", help="Which similarity function to use",
required=False)
parser.add_argument("--embedding_vocab", type=str, help="Vocab of the embeddings")
parser.add_argument("--embedding_vectors", type=str, help="Vectors of the embeddings")
parser.add_argument("--use_glove", type=boolean_string, default=False, help="Use glove")
parser.add_argument("--postspec", type=boolean_string, default=False, help="Use postspecialized fasttext")
parser.add_argument("--is_vec_format", type=boolean_string, default=False, help="Whether embeddings are in vec format")
parser.add_argument("--embeddings", type=str, help="Vectors and vocab of the embeddings")
parser.add_argument("--lang", type=str, default="en", help="Language to test")
args = parser.parse_args()
start = time.time()
logging.basicConfig(level=logging.INFO)
logging.info("XWEAT started")
weat = XWEAT()
if args.test_number == 1:
targets_1, targets_2, attributes_1, attributes_2 = weat.weat_1()
elif args.test_number == 2:
targets_1, targets_2, attributes_1, attributes_2 = weat.weat_2()
elif args.test_number == 3:
targets_1, targets_2, attributes_1, attributes_2 = weat.weat_3()
elif args.test_number == 4:
targets_1, targets_2, attributes_1, attributes_2 = weat.weat_4()
elif args.test_number == 5:
targets_1, targets_2, attributes_1, attributes_2 = weat.weat_5()
elif args.test_number == 6:
targets_1, targets_2, attributes_1, attributes_2 = weat.weat_6()
elif args.test_number == 7:
targets_1, targets_2, attributes_1, attributes_2 = weat.weat_7()
elif args.test_number == 8:
targets_1, targets_2, attributes_1, attributes_2 = weat.weat_8()
elif args.test_number == 9:
targets_1, targets_2, attributes_1, attributes_2 = weat.weat_9()
elif args.test_number == 10:
targets_1, targets_2, attributes_1, attributes_2 = weat.weat_10()
else:
raise ValueError("Only WEAT 1 to 10 are supported")
if args.lang != "en":
logging.info("Translating terms from en to %s", args.lang)
translation_dict = load_vocab_goran("./data/vocab_dict_en_" + args.lang + ".p")
targets_1 = translate(translation_dict, targets_1)
targets_2 = translate(translation_dict, targets_2)
attributes_1 = translate(translation_dict, attributes_1)
attributes_2 = translate(translation_dict, attributes_2)
if args.lower:
targets_1 = [t.lower() for t in targets_1]
targets_2 = [t.lower() for t in targets_2]
attributes_1 = [a.lower() for a in attributes_1]
attributes_2 = [a.lower() for a in attributes_2]
if args.use_glove:
logging.info("Using glove")
embd_dict = load_embedding_dict(glove=True)
elif args.postspec:
logging.info("Using postspecialized embeddings")
embd_dict=load_embedding_dict(postspec=True)
elif args.is_vec_format:
logging.info("Embeddings are in vec format")
embd_dict = load_embedding_dict(embeddings_path=args.embeddings, glove=False)
else:
embd_dict = load_embedding_dict(vocab_path=args.embedding_vocab, vector_path=args.embedding_vectors, glove=False)
weat.set_embd_dict(embd_dict)
logging.info("Embeddings loaded")
logging.info("Running test")
result = weat.run_test_precomputed_sims(targets_1, targets_2, attributes_1, attributes_2, args.permutation_number, args.similarity_type)
logging.info(result)
with codecs.open(args.output_file, "w", "utf8") as f:
f.write("Config: ")
f.write(str(args.test_number) + " and ")
f.write(str(args.lower) + " and ")
f.write(str(args.permutation_number) + "\n")
f.write("Result: ")
f.write(str(result))
f.write("\n")
end = time.time()
duration_in_hours = ((end - start) / 60) / 60
f.write(str(duration_in_hours))
f.close()
if __name__ == "__main__":
main()