
=====

Kernel Sanders
CSAW ESC’2019

Grant Hernandez, Hunter Searle, Owen Flannagan, Claire Seiler,
Kevin R.B. Butler

University of Florida

Florida institute for Cybersecurity Research 0

=====Dynamic & Symbolic Analysis with ANGR

• Running these challenges and being able to debug them would
improve things

• We decided to use ANGR, a popular concolic execuPon engine and
binary analysis framework

Florida institute for Cybersecurity Research 1

=====Solving A-lounge

import angr
proj = angr.Project("A/TeensyChallengeSetA.ino.elf")

st = proj.factory.blank_state()
st.options |= set(["SYMBOL_FILL_UNCONSTRAINED_MEMORY"])

st.inspect.b(’mem_read’, print_card_offsets)

mainObj = proj.loader.main_object
sym = mainObj.symbols_by_name["_Z11challenge_06packet"]
st.regs.pc = sym.linked_addr

mgr = self.proj.factory.simgr(st)
mgr.use_technique(angr.exploration_techniques.Explorer(

find=[0xc21], avoid=[0xc51]))

mgr.run()

print_table(mgr.found[0])

Florida ins8tute for Cybersecurity Research 2

0xc21

0xc51

=====print_card_offsets

Florida institute for Cybersecurity Research 3

WHITE_CARD_START_ADDR = 0x7fff0000-0xf

WHITE_CARD_SZ = 16*64

WHITE_CARD_END_ADDR = WHITE_CARD_START_ADDR + WHITE_CARD_SZ

BUTTON_OFFSET = WHITE_CARD_START_ADDR + \

WHITE_CARD_SZ + 48

def print_card_offsets(state):
expr = state.inspect.mem_read_address

the address could be symbolic, so get ’a’ solution
expr_val = state.solver.eval(expr)

if expr_val >= WHITE_CARD_START_ADDR and expr_val <=
WHITE_CARD_END_ADDR:

offset = expr_val - WHITE_CARD_START_ADDR

print("CARD READ: %x (%s)" % (offset, str(expr))

elif expr_val == BUTTON_OFFSET:

print("!!!!!! BUTTON READ !!!!!!")

=====print_table

Florida ins8tute for Cybersecurity Research 4

def print_table(state):
table = state.solver.eval(
state.memory.load(WHITE_CARD_START_ADDR, WHITE_CARD_SZ),
cast_to=bytes)

buttons = state.solver.eval(
state.memory.load(BUTTON_OFFSET, 1), cast_to=int)

arr = [], output = “”

for i in range(64):
arr += [[c for c in table[i*16:(i+1)*16]]]

...

print("\n".join(output))

=====Getting Angry: Execution Troubles

• I/O (environment)
• Calls to print, delay, etc. needed to be hooked and mocked to avoid I/O

• State Explosion
• Some challenges had too much state to be feasible without additional

constraints

• Unsat
• Constraint solvers can’t deal with cryptographic hash functions

• Slow Execution
• ANGR lifts all basic blocks to VEX IR and executes that. This incurs >100x

slow down in some cases
• Solution: MORE CORES (used a 40-core server when needed)

Florida ins8tute for Cybersecurity Research 5

=====How many challenges did we AutoSolve™ ?

• Set A
• Lounge ✓
• Closet X (symbolic load)
• Café ✓
• Stairs ✓

• Set B
• Mobile X (state space)
• Dance X (hash function)
• Code X (hash function)
• Blue X (hash function)

• Set C
• Uno X (state space)
• Game X (state space)
• Break ✓
• Recess ✓

• Set D
• Bounce ✓

• Set E
• Steel X (hash funcPon)
• Caeser X (error)
• Spiral ✓
• Tower X (staPc analysis, hash func.)

• Set F
• Spire ✓

Florida institute for Cybersecurity Research 6

AutoSolve™: 8/18 (44%)
Hash FuncPon: 5/18
Error/Timeout: 5/18

=====Our Results

• Set A
• Lounge ✓
• Closet ✓
• Café ✓
• Stairs ✓

• Set B
• Mobile ✓
• Dance ✓
• Code ✓
• Blue X (hash wouldn’t crack!)

• Set C
• Uno ✓
• Game ✓
• Break ✓
• Recess ✓

• Set D
• Bounce ✓

• Set E
• Steel ✓
• Caeser X (ran out of time)
• Spiral ✓
• Tower ✓

• Set F
• Spire ✓

Florida ins8tute for Cybersecurity Research 7

Solved: 16/18 (88.8%)
DNF: 2/18

=====Full Code ExecuPon via D-Bounce

• Challenge summary: you are given a controlled stack overflow and
need to redirect the saved LR to the fillChallengeHash funcPon
• What about redirecPng to some shellcode instead?
• Saved LR -> [0x1fff976d + 0x110] (global RFID array)

Florida ins8tute for Cybersecurity Research 8

.section .text

.align 2

.syntax unified
adr r7, serial_putchar
ldrh r7, [r7]

adr r6, hacked

looper:
ldrb r0, [r6]

blx r7
ldrb r0, [r6, #1]
blx r7

b looper

serial_putchar:

.word 0x3dad

hacked:

.ascii "HACKED\n"

=====Conclusion

•Work smart, not hard
• StaPc analysis is expensive. Dynamic analysis gets straight to the point

• Firmware without the hardware is just sopware
• Emulate only what you need and mock away everything else

• Symbolic execuPon works great on smaller problems
• Domain knowledge can alleviate state explosion, but this requires

staPc analysis

• Firmware exploitaPon is like going back to the 90’s
• Processors powering many embedded devices don’t support modern

miPgaPons (or they are turned off)

Florida ins8tute for Cybersecurity Research 9

=====

Thank you!
Grant Hernandez

@digital_cold- htps://hernan.de/z

Hunter Searle

Florida institute for Cybersecurity Research 10

