Kernel Sanders
CSAW ESC’2019

Grant Hernandez, Hunter Searle, Owen Flannagan, Claire Seiler,
Kevin R.B. Butler

University of Florida

* Running these challenges and being able to debug them would
improve things

* We decided to use ANGR, a popular concolic execution engine and
binary analysis framework

Florida institute for Cybersecurity Research

import angr
proj = angr.Project ("A/TeensyChallengeSetA.ino.elf")

st = proj factory.blank state()

Decomplle challenge_0 I- unge - (Tet f‘;TT.T' TTiJCONSTRAINED_MEMORY"])

125 local_8c = 0;

126 | if (b % a == 0x18af) { d offsets)

127 i=0; O0xc21 -

128 while (i < @0x1f) {

129 challResult[i] = (&stack@Oxffffff54)[i];

130 i=1+1; _.1challenge 0O6packet"]
131 } -

132 | }

133 else {

134 i = 0; O0xc51

135 while (j < 0x1f) { :

136 challResult[j] = -0x78; 1_techniques.Explorer (
137 j=3+1;

138 H

139 (}

print table (mgr.found[0])

Florida institute for Cybersecurity Research P

UUUUUUUUUUU

FLORIDA

print_card offsets

WHITE CARD START ADDR = 0x7fff0000-0xf
WHITE CARD SZ = 16*64
WHITE CARD END ADDR = WHITE CARD START ADDR + WHITE CARD SZ
BUTTON OFFSET = WHITE CARD START ADDR + \
WHITE CARD SZ + 48

def print card offsets(state):
expr = state.inspect.mem read address

the address could be symbolic, so get "a’ solution
expr val = state.solver.eval (expr)

if expr val >= WHITE CARD START ADDR and expr val <=
WHITE CARD END ADDR:

offset = expr val - WHITE CARD START ADDR

print ("CARD READ: Sx (%s)" % (offset, str(expr))
elif expr val == BUTTON OFFSET:

print("!!! 111 BUTTON READ !!l11I1m)

Florida institute for Cybersecurity Research

print_table

def print table(state):
table = state.solver.eval (

state.memory.load (WHITE CARD START ADDR, WHITE CARD S7),
cast to=bytes)

U NNNNNNNNN

FLORIDA

buttons = state.solver.eval (
state.memory.load (BUTTON OFFSET, 1), cast to=int)

arr

[], output = “~

for 1 in range(64):
arr += [[c for c in table[i*16: (i+1)*106]]]

print ("\n".join (output))

Florida institute for Cybersecurity Research

* |/O (environment)
* Calls to print, delay, etc. needed to be hooked and mocked to avoid /O

e State Explosion
* Some challenges had too much state to be feasible without additional
constraints
* Unsat
* Constraint solvers can’t deal with cryptographic hash functions

e Slow Execution

 ANGR lifts all basic blocks to VEX IR and executes that. This incurs >100x
slow down in some cases

 Solution: MORE CORES (used a 40-core server when needed)

Florida institute for Cybersecurity Research

How many challenges did we AutoSolve™ ? UF

FLORIDA

* Set A * Set D
* Lounge v * Bounce v
* Closet X (symbolic load) e SetE
® Café\/ ° Steel
* Stairs v/ * Caeser X (error)
* SetB * Spiral v
* Mobile X (state space) » Tower
* Dance e Set F
* Code * Spire v
* Blue
* Set C
* Uno X (state space) ™. 0
. Game X (state space) AutoSolve™: 8/18 (44%)
* Break v/

* Recess v Error/Timeout: 5/18

Florida institute for Cybersecurity Research

Our Results U NNNNNNNNN
FLORIDA

* Lounge v * Bounce v
e Closet v . St E
+ Café v * Steel v/
e Stairs v . Caeser
"oetB * Spiral v
e Dance Vv . Set F
* Code / * Spire vV
* Blue
* Set C
e Uno Vv . .
e Break v
» Recess v

Florida institute for Cybersecurity Research 7

Full Code Execution via D-Bounce UF
FLORIDA

e Challenge summary: you are given a controlled stack overflow and

need to redirect the saved LR to the fillChallengeHash function

* What about redirecting to some shellcode instead?
e Saved LR-> [0x1fff976d + 0x110] (global RFID array)

.section .text

.align 2
.syntax unified
adr r7, serial putchar serial putchar:
ldrh r7, [r7] .word Ox3dad
adr ro6, hacked
looper: hacked:
1drb r0, [r6] .ascii "HACKED\n"
blx r7
1drb r0, [r6, #1]
blx r7

b looper

Florida institute for Cybersecurity Research

* Work smart, not hard
e Static analysis is expensive. Dynamic analysis gets straight to the point

e Firmware without the hardware is just software
* Emulate only what you need and mock away everything else

* Symbolic execution works great on smaller problems

* Domain knowledge can alleviate state explosion, but this requires
static analysis

* Firmware exploitation is like going back to the 90’s

* Processors powering many embedded devices don’t support modern
mitigations (or they are turned off)

Florida institute for Cybersecurity Research

Thank you!

Grant Hernandez
@digital cold- https://hernan.de/z

Hunter Searle

Florida institute for Cybersecurity Research

