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I. INTRODUCTION

First, to enable collaboration amongst team members,
we set up a GHIDRA shared project on our own server to
share reversing progress. All relevant challenge binaries
were ARM-32 Cortex-M4 (TeensyChallengeSetX.ino.elf).
These contained all of the challenge_X functions that we
had to reverse. The AVR binaries were used for blinking
the LEDs, polling the buttons, and displaying to the LCD.
It also acted as the I2C bus master, with the Teensy acting
as a slave with address 0x01. The single most difficult part
of reversing these challenges with GHIDRA was the broken
RFID stack variables. GHIDRA was unable, for nearly all
challenges, to make the offsets into the RFID data easily
apparent.

To assist us with the problem of stack addresses, we used
ANGR, a python framework for analyzing binaries. In order
to analyze binaries, ANGR lifts the file into Valgrind’s VEX
intermediate representation (IR), then uses both static
and dynamic (“concolic”) analysis. We used ANGR to hook
all memory reads and writes. If the R/W fell in the range
of the RFID data on the stack, we printed CARD READ:
XX where XX was the hex offset into the card data. This
alone saved us from manually counting offsets across stack
frames. Beyond finding the address of card reads, ANGR
allowed us to automatically solve many of the simpler

challenges. More details are shown in

The highlights of our report are:

o We employed concolic analysis using ANGR to avoid
reversing as many challenges as possible
o We achieved arbitrary code execution on challenge
D-bounce
All hashes for our solved challenges are in the
Appendix under We were able to solve
16/18 challenges for a total of 1810 points. Our video
demo is available at https://drive.google.com/open?id=
1Dxu0LSNhNxHRTTTY GJKsosiagBaUCiCX

II. CHALLENGE SET A
A. Lounge

Lounge was, at first glance, a difficult challenge due to
all of the emulated floating point instructions. Further
reversing revealed that only two bytes of card data are
used to determine the win condition of a * b == 0x18af.
This means the keyspace is 2'6 — an easily bruteforceable
amount. To enable us to bruteforce without manually

reflashing card data, we used ANGR for dynamic analysis.
To start, we created an ANGR project:

import angr

proj = angr.Project("A/TeensyChallengeSetA.ino.elf")
Then we created a blank_state, disabled symbolic

memory, set the starting PC to challenge_0, and ex-

plored until the goodboy or end of the function:

st = proj.factory.blank_state()

st.regs.pc = proj.loader.main_object.symbols_by_namel["
_Zllchallenge_O6packet"].linked_addr
st.options |= set(["ZERO_FILL_UNCONSTRAINED_MEMORY"])

mgr = self.proj.factory.simgr(st)

mgr .use_technique (angr.exploration_techniques.Explorer (
find=[0xc21], avoid=[0xc51]))

mgr . run ()

This performs purely concrete execution until an ad-
dress in the find or avoid sets is found. In this case,
because the RFID data was assumed to be zero, the
SimulationManager ends with one state in the “avoid”
stash. This run took exactly 30 seconds, which is quite a
slowdown compared to a real execution environment. This
is because ANGR interprets VEX Intermediate Represen-
tation (IR) instead of native machine code, in addition to
performing expensive memory and register bookkeeping.
This can incur slowdowns of 100 - 1000x, depending on the
instructions being emulated. To alievate this slowdown,
ANGR provides addtional execution engines, such as Uni-
corn,| which executes native instructions, to burn through
concrete instruction traces. Unfortunately, ANGR’s ver-
sion of Unicorn does not support ARM, preventing this
speedup.

With these constraints, it looked as if concrete brute-
forcing with ANGR would be too expensive. Ironically,
switching to symbolic execution let us discover more than
one solution to this problem in less than two hours of
wall-clock time. Switching to symbolic execution involved
investigating which offsets into the card data were being
read by the challenge function. To do this, we hooked all
memory reads during execution and printed when a read
address fell in the range of the RFID card data on the
local stack frame:

# Determined by breakpointing in angr and correlating to
the output of

# ‘debugPrintPacket’

WHITE_CARD_START_ADDR = 0x7£f£f0000-0xf

WHITE_CARD_SZ = 16%64

WHITE_CARD_END_ADDR =
WHITE_CARD_SZ

BUTTON_OFFSET = WHITE_CARD_START_ADDR + WHITE_CARD_SZ +
48

WHITE_CARD_START_ADDR +
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def print_card_offsets(state):

expr = state.inspect.mem_read_address
# the address could be symbolic, so get ’a’ solution
expr_val = state.solver.eval (expr)

if expr_val >= WHITE_CARD_START_ADDR and expr_val <=
WHITE_CARD_END_ADDR:
offset = expr_val - WHITE_CARD_START_ADDR
print ("CARD READ: %x (%s)" % (offset, str(expr))
elif expr_val == BUTTON_OFFSET:
BUTTON READ !ttrtriine

st.inspect.b(’mem_read’, action=

print_card_offsets)

when=angr .BP_AFTER,

The WHITE_CARD_START_ADDR was determined by man-
ual inspection by stepping through execution with ANGR.
We enable this breakpoint on every challenge we solve
going forward. In this case, the card offsets were Ox4c and
0x4d. Once we had determined these, we were able to set
these offsets as symbolic variables:

st.memory.store (WHITE_CARD_START_ADDR+Ox4c,
BVS("inputi", 8))

st.memory.store (WHITE_CARD_START_ADDR+0x4d,
BVS ("input2", 8))

st.solver.

st.solver.

These are the only wvariables in memory that we
made symbolic (the ZERO_FILL_UNCONSTRAINED_MEMORY
ensures this). We also track when the button values are
read by a challenge function. This offset was determined
by looking at the static RFID structure in GHIDRA. Next,
to speed up the execution process, we added lightweight
parallelism. We executed until we received a found state
with the Explorer PathTechnique shown earlier:

from multiprocessing import Pool, cpu_count

state):
Executed in another process
mgr = self.proj.factory.simgr(state)
mgr . run(n=20)
return [mgr.active,

exec_once_lounge (self,

nun nun

mgr . found]

join_results (omgr):
mgr.active += omgr [0]
mgr . found += omgr [1]

# get some initial paths
mgr .run(n=4)
pool = Pool(processes=cpu_count())

while not mgr.found:
print (mgr)

if len(mgr.active) == O0:
time.sleep (1)
continue

active_st = mgr.active.copy()
mgr .drop (stash=’active’)

print ("Distributing ’%d states" % len(active_st))
for a in active_st:

pool.apply_async (exec_once_lounge,
callback=join_results)

args=(a,),

Running the above code on dual Intel Xeon CPU E5-
2630 v4 @ 2.20GHz CPUS with 40 cores total, we were
able to find two paths, at which point the execution halted.
To help pretty-print the card data table and buttons, we

designed a helper that evaluates the symbolic or concrete
card data from an execution state:

def print_table(self, state):
table = state.solver.eval(state.memory.load(
WHITE_CARD_START_ADDR, WHITE_CARD_SZ), cast_to=
bytes)
buttons = state.solver.eval(state.memory.load(
BUTTON_OFFSET, 1), cast_to=int)

arr = []
for i in range (64):

arr += [[c for c in table[i*16:(i+1)*16]1]]

output = []

output += ["# 0o 1 2 3 4 5 6 7 8 9 a b
c d e f"]
output += ["p = ["]

for i, row in enumerate (arr):
eol = "," if i < 63 else "]"
row = ", ".join([(("0x%02x" % x) if x != 0 else
"0") for x in row])
output += [" [" + str(row) + ("1%s # Jx" % (
eol, i))]
output += ["a = O0x%x" % ((buttons >> 4) & 0xf)]

output += ["b = 0x%x" % (buttons & Oxf)]

print ("\n". join (output))

Calling print_table allows us to create sender . py files
by just copying and pasting the result. We also have a
mode to directly program a card if ANGR is run on the
local machine.

As we did not need to reverse engineer this challenge
at all, except to find the goodboy and badboy basic block
addresses (0xc21 and Oxc51), no discussion is necessary
and if this kind of “lock” was used in the real world, it
would quite ineffective as the key is too small. The two

solutions we found for this challenge are in
B. Closet

With the basic ANGR framework created for the previous
challenge, we were able to easily support a new challenge.
All that needed to be changed was the initial starting
function address. Unlike the previous challenge, symbolic
execution with ANGR did not fare so well. We encountered
constraint explosion due to a symbolic memory read on
line 18 below:

1 char table[128];

2 char key[12] = "ESC19-rocks!"

3 bool good = true;

4

5 for (dint i = Oxbc; i < 0x84; i++) {

6 if (i < 0x70) {

7 // stored in table at +0x6c

8 table[i + 0x10] = RFID[i];

9 Print::println((Print #*)&Serial,i + -0x5c);
10 } else if (0x7f < i) {

11 table[i] = RFID[il;

12 Print::println((Print *)&Serial, i + -0x6c);
13 }

14 }

15

16 for (int i = 0; i < 12; i++) {

17 // this causes angr to blow up as it is a symbolic

index

18 if (key[i] != table[(uint)table[i + 0x6c]l + 0x6cl)
19 good = false;
20
21



Assuming the first table load was symbolic, then the
next table load’s address would be symbolic. ANGR instead
of loading from a single address, loads from 256 addresses
within the table simultaneously. This causes the result of
the last table lookup to be the disjunction of 256 separate
memory loads. These yield massive constraints which get
passed on to the Z3constraint solver, which greatly slows
down. The time to determine the satisfiability increases
each time through the loop. This ends up taking so long
that 99% of the time executing is spent in the solver. We
tried to solve this by preconstraining our symbolic card
input to resonable values, but this still causes slow downs
and final card data outputs to be wrong. Instead for this
challenge, we manually solved it by dumping the concrete
stack data in ANGR and measuring the offset from the
table load to the already in-memory key ESC19-rocks!.
This offset was 0x18+i. The two lines needed to solve this
concretely with ANGR are below:
for i in range(0xc):

st.memory.store (WHITE_CARD_START_ADDR+0x5c+i, pack("<
b", 0x18+1i))

From a security perspective, it should be noted that we
are able to read outside the bounds of the table variable.
In this case, it was relevant as the key was outside of the
table (we did not need to pass it in via the RFID table).

C. Cafe

The cafe challenge involved a linear transformation
of a template challenge hash with multiple XORs and
various logic. Like previous challenges, we worked smart
and avoided any reversing and just threw ANGR at the
challenge. The catch for this challenge versus others is that
there is no dependent branch that indicates whether the
challenge was solved or not. Instead the template challenge
hash is transformed in various ways and MUST equal the
string solved challenge cafe abcdefg.

We solved this challenge using ANGR in symbolic mode.
At this point, we wrapped all our ANGR usage in a class
with helpers to aid the development. For more information
read the angresc.py file included with the challenge
submission. The relevant lines from the solver are included
below:

self._set_start_symbol("_Zlichallenge_26packet")
addr = self.sym.linked_addr

self. _hook_prints ()
st = self._get_start_state(addr, [’
SYMBOL_FILL_UNCONSTRAINED_MEMORY’])

mgr = self.proj.factory.simgr(st)

# We used Veritesting to aggressively merge states and
save execution time

# Without this, execution took much more time

mgr.use_technique (angr.exploration_techniques.
Veritesting ())

mgr . run ()

# The final state becomes unconstrained with it returns
from the challenge

# function as the saved LR is left as symbolic (
intentionally)

if not mgr.unconstrained:
print ("Analysis failed")
return

s = mgr.unconstrained [0]

fixed = ’solved challenge cafe abcdefg’
# address of challResult seen in GHIDRA
challResult = Ox1fffal40

# Constrain the hash
for i in range(len(fixed)):
s.solver.add(s.memory.load(challResult+i, 1) ==
fixed[il))

ord (

# Eval the string at the address given the constraints
strout = self.read_string(s, challResult)
print ("ChallResult: " + repr(strout))

self.print_table(s)

The highlights of this challenge are the use of Veritest-
ingE| and additional constraints to get the desired output.
Veritesting enables aggressive state merging, shoving more
responsibility to the solver. At the end of the function
only a single symbolic state with all the possible symbolic
constraints for each byte in the challenge hash OR’d with
each out. This state reaches the end of the function and
becomes unconstrained as its saved LR is symbolic to pre-
vent returns from the challenge function. Then using the
single unconstrained path, we add additional constraints
to the challenge hash variable gleaned from GHIDRA to
yield the correct card table upon printing.

D. Stairs

We were given the solution for stairs, but we solved it
with ANGR anyways.

self._set_start_symbol("_Zilchallenge_36packet")
addr = self.sym.linked_addr

self._hook_prints ()

st = self._get_start_state(addr, [’
SYMBOL_FILL_UNCONSTRAINED_MEMORY’])
mgr = self.proj.factory.simgr(st)

mgr.use_technique (angr.exploration_techniques.Explorer (
find=[0xf61], avoid=[0xf85,0xf39]))

mgr . run ()

s = mgr.found[0]
mgr_final = self.proj.factory.simgr(s)
mgr_final.run()

self.print_table(s)
No issues were experienced with solving this with ANGR.

III. CHALLENGE SET B
A. Mobile

This challenge involved a simple algorithm that, based
on the values of an array through which it iterated, would
select characters from a lookup table (LUT) containing the
ASCII alphabet. The most important code is the following:
lut_it = 0

hash_it =
for(int i

H

[N

1; i < Oxle; i++){

Thttps://github.com/angr/angr/blob/master/angr /analyses/veritesting.py


https://github.com/angr/angr-z3

if (donme == 0) {

if (indexes[i] == indexes[i - 1]) {

lut_it = lut_it + 1;
}
else {
if ((indexes[i] == 0) || (indexes[i - 1] == 0)) {
if (indexes[i - 1] != 0) {
challHashGen[hash_it] = LUT[lut_it + indexes[i
- 1] * 3];
hash_it = hash_it + 1;
¥
lut_it = 0;
¥
else {
done = 1;
}
¥
¥

}

In order to select the nth character from the LUT,
lut_it should be n%3 and indexes[i-1] should be n/3. To
achieve this, we set an array with n%3 + 1 instances of
the value n/3, followed by a single zero. This pattern was
repeated for each character that was needed to achieve the
correct output message. ANGR was attempted to be used
for this, but due to the symbolic read similar to A-closet,
we opted for a manual reverse engineering approach.

B. Dance

Previous challenges had been self-contained, but Dance
employed a library to perform Blake-256 hashes. It should
be noted that ANGR is unable to solve any challenge
involving cryptographically strong hash functions. This is
because symbolically executing a hash function would pass
unsolvable constraints to the underlying constraint solving
engine. If the engine was able to deduce a solution, this
would constitute a break of the hash function.

To solve the challenge without ANGR, the correct 8-
character password needed to be passed in. The func-
tion performs a hash of this input and compares it
against a fixed digest. To determine if this hash was
already cracked, we reconstituted it from the decom-
piled GHIDRA output: 56884898da28047151d0e56£8dc629
2773603d0d6aabbdd62al1ef721d1542d8. Google’ing this
hash lead to many hash cracking websites that showed
this was infact a SHA-256 hash of the word "password”.
Placing this at the starting offset of 0x93 led to the solve.

C. Code

Like the previous challenge, Code involved a hash func-
tion H45H. Examining the functions for constants and
digest size indicated that this was MD5. The input to MD5
was the string “imjustrandomdatathathasnomeaningwhat-
soever!” and a single character from the RFID card at
offset 0x9b. The digest was compared to a fixed hexstring.
A quick python brute forcer was written to find the correct
byte:

import struct

import hashlib

target = "242b461d0b97ccab5e5d62372b770ab4"
assert len(target) == 32

for i in range (256):

inp = "imjustrandomdatathathasnomeaningwhatsoever!"
+ struct.pack("B", i)

res = hashlib.md5(inp).hexdigest ()

assert len(res) == len(target)

if res == target:
print (inp, 1)
break

The correct byte was ‘L’ This led to the solve. There
was a base64 string as a hint, but all it said was “berger
king”. It’s unclear how this was a hint.

D. Blue

We were unable to solve this challenge. We tried us-
ing ocl-hashcat with many rules/wordlists to get the 8-
character password, but to no avail.

IV. CHALLENGE SET C
A. Uno

To start, the hint for this challenge was “Is OISC
13377”. Looking up OISC lead to the |One Instruction Set
Computer wikipedia articlel From previous experience, we
know that any arbitrary computation could be created
with a subleq instruction. This instruction performs a
subtraction of two memory operands and branches if their
result is less than or equal to zero. Reading, retyping,
and renaming in GHIDRA confirmed that this was the
instruction set being used:

int MEM[0x5f];

// each char +3 from "solved ..."

// need to -3 to restore

char * TABLE = "vroyhg#fkdoohqjh#xqr#defghijklm";

// initialize memory

for (int i = 0; i < 0x5f; i++) {
if (i < 0x30) MEM[i] = (int)RFID[0x200+il];
else if (i < 0x40) MEM[i] = (int)RFID[0x240+i];
else MEM[i] = (int)TABLE[il;

}

while ((hashAddr = hashAddrCpy,
(PC < 0x3d))) {
PC_1 = PC + 1;
PC = PC_1;
CMP1 = MEM[PREV_PC];
PC = PREV_PC + 2;
CMP2 = MEM[PC_11];
PC = PREV_PC + 3;
BRANCH_PC = MEM[PREV_PC + 2];
if (CMP1 == -1) break;
if ((CMP2 == -1) && (hashAddrCpy < Ox1f)) {
hashAddrCpy = hashAddrCpy + 1;
challHash[hashAddr] = (char)MEM[CMP1];

PREV_PC = PC, -1 < PC &&

}

else {
// SUBLEQ 0ISC
MEM[CMP2] = MEM[CMP2] - MEM[CMP1];
if (MEM[CMP2] < 1) {

PC = BRANCH_PC;

}

}

}

The trick for this challenge was that the challHash was
uninititialized and had to be assigned to by the OISC loop.
Luckily, a transformed version of the output was placed

into the MEM region at offset 0x40. This was loaded
from a fixed table and was just the “solved” string with a
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character shift of +3. Good thing we have an instruction
dedicated to subtracting!

Next began the task of writing a subleq pro-
gram to shift and store the string. To aid develop-
ment, we created a two-pass assembler (available under
solutions/C-uno-8/asm.py). Our resulting subleq as-
sembly was the following:

; A, B, C are integers and are treated as addresses
; MEM[B] = MEM[B] - MEM[A]

; if (MEM[B] < 1)

5 PC = C

; for(int i = 0; i < 31; i++) {
MEM[0x40+i] = MEM[0x40+i] - 3;
; output (MEM [0x40]) ;

s
loop:
subleq 0x40, pos3, -1 ; table[i] -= 3
loop2:
subleq -1, 0x40, -1 ; output (MEM[i])
subleq 1, negl, -1 ; self-modifying code
subleq 3, negl, -1 ; self-modifying code
subleq TA, TA, next ; TA = 0
next:
subleq TA, tablemax, next2 ; TA = -tablemax
next2:
subleq TB, TA, next3 ; TB = -TA
next3:
subleq TB, loop, end ; tablemax - MEM[O]

subleq TB, TB, loop ; goto loop

end:

subleq -1, -1, -1 ; exit program

; Data region
pos3:

dd 3
negl:

dd -1
tablemax:

dd 0x5f
TA:

dd 0
TB:

dd 0

Compiling this yielded [30, 64, -1, 64, -1, -1, 31, 1, -1,
31, 3, -1, 33, 33, 15, 32, 33, 18, 33, 34, 21, 0, 34, 27, 34, 34,
0,-1,-1,-1, 3, -1, 95, 0, 0] for a total length of 35 words.
This was written to card offset 0x200 as bytes and the
challenge was solved. ANGR was used to test and debug
the concrete solution without reflashing the card for each

iteration.

B. Game

Our first clue in solving this challenge was a function
called findBestMove. This suggested to us that the solu-
tion would require putting game moves onto the card in or-
der to play against the program. Within the findBestMove
function is another function called minimax, which is a
common algorithm for finding optimimal moves in simple
games. An examination of minimax made it clear that the
game being played is tic-tac-toe. The original board state
is saved in a variable in the challenge function. The game
begins with the program having moved twice (player X),
and the keycard (player O) having moved once:

XX _
o

Therefore, the keycard moves first after being scanned.
It was a simple matter to plan out our moves to ensure that
the keycard ties with the program. The sequence of moves
were read in starting at offset 0x9¢c. The move encoding
was each byte was a move with the top nibble being the
row and the bottom nibble being the column. The moves
to tie were [r, ¢] (0, 2), (1, 0), and (2, 2). This left the
board in the state of a tie, leading to the win condition.

C. Break
This challenge was aptly named. ANGR chewed through

it.

st = self._get_start_state(addr, [
SYMBOL_FILL_UNCONSTRAINED_MEMORY’])

mgr = self.proj.factory.simgr(st)

# explore to the goodboy
mgr .explore (find=[0x11b9])

self.print_table (mgr.found [0])

The offsets 0x9f and 0xa0 were set to one and the buttons
set to a = 0x4, b = 0x6.

D. Recess

This challenge was also aptly named.

st = self._get_start_state(addr, [’
SYMBOL_FILL_UNCONSTRAINED_MEMORY’])aNE
mgr = self.proj.factory.simgr(st)

# explore to the goodboy
mgr .explore (find=[0x1291])

self .print_table (mgr.found[0])

The offsets Oxal - Oxad were set to the string "g00d" to
get the solve.

V. CHALLENGE SET D
A. Bounce

This challenge was short but different than all of the
others. The challenge hash not being filled in the challenge
function itself. Further investigation revealed that the
fillChallengeHash called only during setup would fill
and send the hash. This would only happen if the use
global boolean was set to true. This boolean was set to true
when conditions were met in the actual challenge function.

At first glance, it would seem that calling this function
again is impossible, but knowing how return addresses on
ARM are saved, we notice that if the right card data is
provided, we can overflow the stack with arbitrary data.
Using ANGR for dynamic analysis, we solved the required
input constraints to make use = true. This included con-
trol over the saved LR on the stack. Here is the solver
script:

mgr = self.proj.factory.simgr(st)

mgr.use_technique (angr.exploration_techniques.Explorer (
find=[0x876, 0x877], avoid=[0x874,0x875]))

st.memory.store (WHITE_CARD_START_ADDR, Db"\x00"x*
WHITE_CARD_SZ)



# Returning right towards the fillChallengeHash function
target_pc = self.obj.symbols_by_namel["
_Z17fillChallengeHashv"].linked_addr

print (" [+] Exploit target PC 7%08x" % target_pc)

stagel = b"\x00"*12 + pack("<I",
x00" + pack("<I", target_pc)

12) + b"\x00\x00\x00\

# clear the white card
st .memory.store (WHITE_CARD_START_ADDR, b"\x00"=*
WHITE_CARD_SZ)

# for each bit that is set,
(24 bytes)

st.memory.store (WHITE_CARD_START_ADDR+0x100, b"\xff"*3)

st.memory.store (WHITE_CARD_START_ADDR+0xcO, stagel)

read a byte from the payload

# Keep buttons symbolic
st .memory.store (BUTTON_OFFSET,
8))

st.solver.BVS(’button’,

Setting the buttons to a = 0x1, b = 0xd allowed the
challenge to be solved.

a) Arbitrary Code Execution: Given that we are able
to fully control the instruction pointer, we can redirect it
to a controlled space in memory to execute ARM Thumb-2
shellcode. The Cortex-M4 does not have any mitigations
(ASLR, XN, MMU, etc.), making this trivial. We jump
into the global RFID variable at [0x1fff976d + 0x110]
(we just change target_pc in the ANGR script) to start
executing the following code:

.section .text
.align 2

.syntax unified

adr r7, putchar
ldrh r7, [r7]
adr r6, hacked
looper:
ldrb r0, [r6]
blx r7
ldrb r0, [r6, #1]
blx r7
b looper

; usb_serial_putchar function
putchar:
.word Ox3dad

hacked:

.ascii "HACKED\n"

This will print “HA” over and over until the watchdog
timer resets. We ran into many issues getting more code
to execute as we believe it was being cut off during the
RFID reading process. Hence, HA instead of HACKED.
See the Bounce challenge directory for the Makefile.

VI. CHALLENGE SET E

A. Steel

This challenge involved MD5 hashing like B-code, with
the catch that a hash was performed multiple times to
increase “security”. The input into the hash function is a
single byte that is determined by some transformations

00O U W

on card data (easily solved by ANGR). Therefore, we must 0

first determine the single byte of input into the MDS5
hashing rounds to solve this problem. At first glance, this

problem seems like it can be solved with a trivial python
bruteforcer:

import hashlib

target = "703224f765d313eed4ed0fadcf9d63abe"
for i in range (256):

obj = hashlib.md5()

obj.update (chr(i))

res = obj.hexdigest ()

for i in range (9):
obj.update (res)
res = obj.hexdigest ()

if res == target:
print ("FOUND: " + chr(i))
break

This proved to be wrong due to the implmentation
details of padding during the calls to H45H: :Final, which
Python’s hashlib did not respect. To account for this, we
downloaded the library that H45H was compiled from:
Hashlib++E| We wrote the following program to mirror
what we saw in GHIDRA:
unsigned char buff[16] = "";|&aNE
std::string target = "703224f765d313eed4edO0fadcf9d63abe";

for (int i = 0; i < 255;
MD5 * md5 = new MD5();
HL_MD5_CTX ctx;
unsigned char inp =

i++) {

ij

memset (&ctx, 0, sizeof (ctx));

md5->MD5Init (&ctx);

md5->MD6Update (&ctx, &inp, (unsigned int)1);
md5->MD5Final ((unsigned char *)buff, &ctx);
std:

:string hexdigest = convToString (buff);

for (int j 0; j < 9;
md5->MD5Update (&ctx,
c_str(), 32);

md5->MD5Final ((unsigned char *)buff,

j++) {
(unsigned char *)hexdigest.

Zctx);

hexdigest = convToString(buff);

}

if (hexdigest == target) {
std::cout << "Got it: " << inp << std::emndl;
break;

}

delete md5;

Compiling and running with g++ -I build/include/
-0 test test.cpp build/1ib/libhl++.a && ./test
still did not find any results. Debugging with ANGR to
compare the output of the second Final call showed a
mismatch. Digging into the Final function source code
yielded the answer:

void MD5::MD5Final (unsigned char digest[16],
HL_MD5_CTX *context)

{
/%
* Zeroize sensitive information.
*/
MD5_memset ((POINTER)context, O, sizeof (*context))
}

2http:/ /hashlib2plus.sourceforge.net/


http://hashlib2plus.sourceforge.net/

The memset on line 8 was NOT in the compiled ver-
sion running on the Teensy. Commenting this line out
allowed the test program to find the correct hash input
of semicolon (‘;’). With this initial input, we could now
use ANGR to solve the first transforms with the known

ending constraint of semicolon:

st.memory.store (WHITE_CARD_START_ADDR+0x191,
BVS(’input’, 8%3))

st.solver.

mgr = self.proj.factory.simgr(st)
mgr . explore(find=[0x1796+1])

s = mgr.found[0]
s.solver.add(s.memory.load(s.regs.r7+0x8c, 1) ==

))

ord(’;’
self .print_table(s)

B. Caeser

We were unable to solve this challenge due to time
constraints.

C. Spiral

This challenge was easily solved by ANGR and did not
require any reversing:

st = self._get_start_state(addr, [’
ZERO_FILL_UNCONSTRAINED_MEMORY’])
mgr = self.proj.factory.simgr(st)

st.memory.store (WHITE_CARD_START_ADDR+0x18d,
BVS("input", 8%4))
mgr .explore(find=[0x1e05],

st.solver.
avoid=[0x1e2b])

s = mgr.found[0]
self.print_table(s)

D. Tower

Examining the challenge showed it was comparing
against a SHA-256 hash again, but this time with an
input length of 13. Even if the password was only lower-
case letters, this would require more than 2210'® hashes —
far exceeding a bruteforceable limit. There was a base64
encoded string above the hashing that decoded to ‘ht’. We
assumed this stood for hash table and wasted time looking
for one. We also used ocl-hashcat with as many wordlists
and rule sets as we could given the time, but no matches
were found. Further investigation showed that there were
more base64 strings encoded throughout. We collected and
decoded them all below:

parts = [’ht’, ’tps’, ’geW’, ’://pas’, ’.com/’, ’Ve’, ’
in’, ’teb’, ’mJP’]
We rearrainging them into https://pastebin.com/

VegeWmJP| which led to the password ndixlelxivnwl!
We burned this on to the card starting at offset 0x180
and got the solve.

VII. CHALLENGE SET F
A. Spire

The final challenge looked resonably straight forward to
have ANGR solved. But when running the resulting table
on the device, it reset. Examining the code further showed

a strange variable assignment to _Reset. Looking at the
assembly confirmed that there was a store instruction that
was writing by default to the reset vectors, causing a
processor fault. In order for our table to process and to see
any debugging information we need to avoid this reset. To
do this, we employ the overflow given to us when offset
0x36f is non-zero. This allows us to write an arbitrary
amount of data onto the stack, overflowing into nearby
variables. One of these variables is the store address that
was causing the reset. By replacing this address with a
known global address that is writable we can avoid the
reset condition. Additionally, past this variable is a final
comparision required to be non-zero to solve, which we can
also overwrite. The concrete solution in ANGR is below:

st = self._get_start_state(addr, [’

ZERO_FILL_UNCONSTRAINED_MEMORY’]) aNi

# the amount of bytes to overwrite on the stack (
negative)

st.memory.store (WHITE_CARD_START_ADDR+0x280,
0) + pack("<i", -(4%3)))

# needs to be non-zero inorder to allow for overwrite

st.memory.store (WHITE_CARD_START_ADDR+0x36f, pack("B",
1))

# must be non-zero to print debugging information

st.memory.store (WHITE_CARD_START_ADDR+0x340, pack("B",
1))

# The region which is written on to key stack variables

# 0x2c3 must be 1 to pass the final check, 0x2c7 a dont’
care,

# 0x2cb MUST be a valid writable memory address to avoid
resets

st.memory.store (WHITE_CARD_START_ADDR+0x2c3,
", 1, 0, Ox1fffal40, 0))

pack("<I",

pack ("<IIIB

ANGR was instrumental in showing which addresses and
which offsets of the card data were written. Like challenge
D-bounce, this challenge can be exploited to achieve arbi-
trary code execution as the saved LR can be overwritten.


https://pastebin.com/VegeWmJP
https://pastebin.com/VegeWmJP

APPENDIX
CHALLENGE HASHES
Challenge A

0 - lounge: 643a6fa20b171fdf3a9e7e1975ce62892fde9cecf2056a73d85£a2d0802d3000 (100 pts)
1d98b315de9dc5a80ee260e571e5358d07a5146248353ed10702176960859f71 (alternative)

1 - closet: 293f7b60b994512db99836ae7d5bab88b2d0089£90£fcf6d51b95b374200dc20f (100 pts)

2 - cafe: 98bcbblal3fdda3ccas88c06ddacOaabc5449c8a9294a9e5¢c297806e7faff007 (130 pts)

3 - stairs: 396f4blcdflcc2e7680£2a8716a18c887cd489e12232e75b6810e9d5e91426c7 (50 pts)

Challenge B

4 - mobile: 68514b8771e5894c799£540855afbc36ef70db34d274a64a8d4271bc1£188379 (100 pts)
5 - dance: e631b32e3e493c51e5¢c2b22d1486d401c76ac83e3910566924bcc51b2157¢837 (130 pts)
6
7

code: 372ded6746e45ef7c8adb5a22c5738a4b5aa982da66bc8ad26aalcca830d05af3 (50 pts)
- blue: [UNSOLVED]

Challenge C

8 - uno: 4842370a583df2fd6328d4a30b09c6bb58d0df767691872b7263e01aed9651cd (200 pts)
9 - game: 63c0b41f89bbf493ba791c092b3e5473e243b9c16666f1ebeaald2bcb2eeb1613 (150 pts)
break: ae4be3d07679£53cf7fd0ed9669d06bc3b22c5554c81e3bad04986bb7ab91dbl (70 pts)

11 - recess: 370815b8d8fde829£5c35£893d0b4139d61a775baad181fcaclfffe014bde9ea (100 pts)

-
o
|

Challenge D

8 - bounce: bb8d9065d2656d3ab62ab650b0543fe73844f4df52f5f5d60cc10b31ae6086ac (150 pts)

Challenge E

12 - steel: 102a3ac6eb0ef2cd010d4ef1776571cdc2af0727££d8c839295e252ab4a256211 (100 pts)
13 - caesar: [UNSOLVED]

14 - spiral: 26ee8470c732dfc821bbe0561b446dc8086560e4e222b22e6a74e559d90a7d61 (130 pts)
156 - tower: b019c48299dd33ec6fdc94da9d5ad06018549ee58f4a829a44d15e6980c22¢cbb (100 pts)

Challenge F
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