-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathutils.py
275 lines (251 loc) · 9.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Copyright (c) 2019, RangerUFO
#
# This file is part of alpr_utils.
#
# alpr_utils is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# alpr_utils is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with alpr_utils. If not, see <https://www.gnu.org/licenses/>.
import cv2
import json
import math
import random
import numpy as np
import mxnet as mx
def points_matrix(pts):
return np.matrix(np.concatenate((pts, np.ones((1, pts.shape[1]))), 0))
def rect_matrix(tlx, tly, brx, bry):
return np.matrix([
[tlx, brx, brx, tlx],
[tly, tly, bry, bry],
[1.0, 1.0, 1.0, 1.0]
])
def transform_matrix(pts, t_pts):
return cv2.getPerspectiveTransform(np.float32(pts[:2, :].T), np.float32(t_pts[:2, :].T))
def rotate_matrix(width, height, angles=np.zeros(3), zcop=1000.0, dpp=1000.0):
rads = np.deg2rad(angles)
rx = np.matrix([
[1.0, 0.0, 0.0],
[0.0, math.cos(rads[0]), math.sin(rads[0])],
[0.0, -math.sin(rads[0]), math.cos(rads[0])]
])
ry = np.matrix([
[math.cos(rads[1]), 0.0, -math.sin(rads[1])],
[0.0, 1.0, 0.0],
[math.sin(rads[1]), 0.0, math.cos(rads[1])]
])
rz = np.matrix([
[math.cos(rads[2]), math.sin(rads[2]), 0.0],
[-math.sin(rads[2]), math.cos(rads[2]), 0.0],
[0.0, 0.0, 1.0]
])
r = rx * ry * rz
hxy = np.matrix([
[0.0, 0.0, width, width],
[0.0, height, 0.0, height],
[1.0, 1.0, 1.0, 1.0]
])
xyz = np.matrix([
[0.0, 0.0, width, width],
[0.0, height, 0.0, height],
[0.0, 0.0, 0.0, 0.0]
])
half = np.matrix([[width], [height], [0.0]]) / 2.0
xyz = r * (xyz - half) - np.matrix([[0.0], [0.0], [zcop]])
xyz = np.concatenate((xyz, np.ones((1, 4))), 0)
p = np.matrix([
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, -1.0 / dpp, 0.0]
])
t_hxy = p * xyz
t_hxy = t_hxy / t_hxy[2, :] + half
return transform_matrix(hxy, t_hxy)
def project(img, pts, trans, dims):
t_img = cv2.warpPerspective(img, trans, (dims, dims))
t_pts = np.matmul(trans, points_matrix(pts))
t_pts = t_pts / t_pts[2]
return t_img, t_pts[:2]
def hsv_noise(img):
hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
hsv[:, :, 0] = hsv[:, :, 0] * (0.8 + random.uniform(0.0, 0.2))
hsv[:, :, 1] = hsv[:, :, 1] * (0.3 + random.uniform(0.0, 0.7))
hsv[:, :, 2] = hsv[:, :, 2] * (0.2 + random.uniform(0.0, 0.8))
return cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
def brightness_noise(img, ratio=0.8):
return np.clip(img * (1.0 + random.uniform(-ratio, ratio)), 0, 255)
def augment_sample(image, points, dims, flip_prob=0.5):
image = image.astype("uint8").asnumpy()
points = np.array(points).reshape((2, 4))
points = points * np.array([[image.shape[1]], [image.shape[0]]])
# random crop
wh_ratio = random.uniform(2.0, 4.0)
width = random.uniform(dims * 0.2, dims * 1.0)
height = width / wh_ratio
dx = random.uniform(0.0, dims - width)
dy = random.uniform(0.0, dims - height)
crop = transform_matrix(
points_matrix(points),
rect_matrix(dx, dy, dx + width, dy + height)
)
# random rotate
max_angles = np.array([80.0, 80.0, 45.0])
angles = np.random.rand(3) * max_angles
if angles.sum() > 120:
angles = (angles / angles.sum()) * (max_angles / max_angles.sum())
rotate = rotate_matrix(dims, dims, angles)
# apply projection
image, points = project(image, points, np.matmul(rotate, crop), dims)
# scale the coordinates of points to [0, 1]
points = points / dims
# random flip
if random.random() < flip_prob:
image = cv2.flip(image, 1)
points[0] = 1 - points[0]
points = points[..., [1, 0, 3, 2]]
# color augment
image = hsv_noise(image)
# brightness augment
image = brightness_noise(image)
return mx.nd.array(image), np.asarray(points).reshape((-1,)).tolist()
def color_normalize(img):
return mx.image.color_normalize(
img.astype("float32") / 255,
mean = mx.nd.array([0.485, 0.456, 0.406]),
std = mx.nd.array([0.229, 0.224, 0.225])
)
def point_in_polygon(x, y, pts):
n = len(pts) // 2
pts_x = [pts[i] for i in range(0, n)]
pts_y = [pts[i] for i in range(n, len(pts))]
if not min(pts_x) <= x <= max(pts_x) or not min(pts_y) <= y <= max(pts_y):
return False
res = False
for i in range(n):
j = n - 1 if i == 0 else i - 1
if ((pts_y[i] > y) != (pts_y[j] > y)) and (x < (pts_x[j] - pts_x[i]) * (y - pts_y[i]) / (pts_y[j] - pts_y[i]) + pts_x[i]):
res = not res
return res
def object_label(points, dims, stride):
scale = ((dims + 40.0) / 2.0) / stride
size = dims // stride
label = mx.nd.zeros((size, size, 9))
for i in range(size):
y = (i + 0.5) / size
for j in range(size):
x = (j + 0.5) / size
if point_in_polygon(x, y, points):
label[i, j, 0] = 1
pts = mx.nd.array(points).reshape((2, -1))
pts = pts * dims / stride
pts = pts - mx.nd.array([[j + 0.5], [i + 0.5]])
pts = pts / scale
label[i, j, 1:] = pts.reshape((-1,))
return label
def iou(tl1, br1, tl2, br2):
wh1 = br1 - tl1
wh2 = br2 - tl2
assert((wh1 >= 0).sum() > 0 and (wh2 >= 0).sum() > 0)
itl = mx.nd.concat(tl1.expand_dims(0), tl2.expand_dims(0), dim=0).max(axis=0)
ibr = mx.nd.concat(br1.expand_dims(0), br2.expand_dims(0), dim=0).min(axis=0)
iwh = mx.nd.relu(ibr - itl)
ia = iwh.prod().asscalar()
ua = wh1.prod().asscalar() + wh2.prod().asscalar() - ia
return ia / ua
def plate_labels(image, probs, affines, dims, stride, threshold):
wh = mx.nd.array([[image.shape[1]], [image.shape[0]]], ctx=affines.context)
scale = ((dims + 40.0) / 2.0) / stride
unit = mx.nd.array(
[[-0.5, -0.5, 1], [0.5, -0.5, 1], [0.5, 0.5, 1], [-0.5, 0.5, 1]],
ctx=affines.context
).T
candidates = []
for x, y in [(j, i) for i in range(probs.shape[0]) for j in range(probs.shape[1]) if probs[i, j] > threshold]:
affine = mx.nd.concat(
mx.nd.concat(
mx.nd.relu(affines[y, x, 0]),
affines[y, x, 1],
affines[y, x, 2],
dim=0
).expand_dims(0),
mx.nd.concat(
affines[y, x, 3],
mx.nd.relu(affines[y, x, 4]),
affines[y, x, 5],
dim=0
).expand_dims(0),
dim=0
)
pts = mx.nd.dot(affine, unit) * scale
pts = pts + mx.nd.array([[x + 0.5], [y + 0.5]], ctx=pts.context)
pts = pts * stride / wh
candidates.append((pts, probs[y, x].asscalar()))
candidates.sort(key=lambda x: x[1], reverse=True)
labels = []
for pts_c, prob_c in candidates:
tl_c = pts_c.min(axis=1)
br_c = pts_c.max(axis=1)
overlap = False
for pts_l, _ in labels:
tl_l = pts_l.min(axis=1)
br_l = pts_l.max(axis=1)
if iou(tl_c, br_c, tl_l, br_l) > 0.1:
overlap = True
break
if not overlap:
labels.append((pts_c, prob_c))
return labels
def reconstruct_plates(image, plate_pts, out_size=(240, 80)):
wh = np.array([[image.shape[1]], [image.shape[0]]])
plates = []
for pts in plate_pts:
pts = points_matrix(pts.asnumpy() * wh)
t_pts = rect_matrix(0, 0, out_size[0], out_size[1])
m = transform_matrix(pts, t_pts)
plate = cv2.warpPerspective(image.astype("uint8").asnumpy(), m, out_size)
plates.append(mx.nd.array(plate))
return plates
def apply_plate(image, points, plate):
image = image.astype("uint8").asnumpy()
plate = plate.astype("uint8").asnumpy()
points = np.array(points).reshape((2, 4))
points = points * np.array([[image.shape[1]], [image.shape[0]]])
pts = rect_matrix(0, 0, plate.shape[1], plate.shape[0])
t_pts = points_matrix(points)
m = transform_matrix(pts, t_pts)
mask = np.ones_like(plate, dtype=np.uint8)
mask = cv2.warpPerspective(mask, m, (image.shape[1], image.shape[0]))
mask = (mask == 0).astype(np.uint8) * 255
plate = cv2.warpPerspective(plate, m, (image.shape[1], image.shape[0]))
return mx.nd.array(cv2.bitwise_or(cv2.bitwise_and(image, mask), plate))
class Vocabulary:
def __init__(self, chars=None):
if chars:
self._chars = ["<PAD>", "<UNK>", "<GO>", "<EOS>"] + chars
self._char_indices = dict((c, i) for i, c in enumerate(self._chars))
self._indices_char = dict((i, c) for i, c in enumerate(self._chars))
def size(self):
return len(self._chars)
def char2idx(self, ch):
if ch not in self._char_indices:
ch = "<UNK>"
return self._char_indices[ch]
def idx2char(self, idx):
return self._indices_char[idx]
def save(self, path):
with open(path, "w") as f:
f.write(json.dumps(self._chars))
def load(self, path):
with open(path, "r") as f:
s = f.read()
self._chars = json.loads(s)
self._char_indices = dict((c, i) for i, c in enumerate(self._chars))
self._indices_char = dict((i, c) for i, c in enumerate(self._chars))