-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathedsr.py
executable file
·82 lines (65 loc) · 2.96 KB
/
edsr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import torch.nn as nn
import math
class MeanShift(nn.Conv2d):
def __init__(self, rgb_mean, sign):
super(MeanShift, self).__init__(3, 3, kernel_size=1)
self.weight.data = torch.eye(3).view(3, 3, 1, 1)
self.bias.data = float(sign) * torch.Tensor(rgb_mean)
# Freeze the MeanShift layer
for params in self.parameters():
params.requires_grad = False
class _Residual_Block(nn.Module):
def __init__(self):
super(_Residual_Block, self).__init__()
self.conv1 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False)
def forward(self, x):
identity_data = x
output = self.relu(self.conv1(x))
output = self.conv2(output)
output *= 0.1
output = torch.add(output,identity_data)
return output
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
rgb_mean = (0.4488, 0.4371, 0.4040)
self.sub_mean = MeanShift(rgb_mean, -1)
self.conv_input = nn.Conv2d(in_channels=3, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False)
self.residual = self.make_layer(_Residual_Block, 32)
self.conv_mid = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False)
self.upscale4x = nn.Sequential(
nn.Conv2d(in_channels=256, out_channels=256*4, kernel_size=3, stride=1, padding=1, bias=False),
nn.PixelShuffle(2),
nn.Conv2d(in_channels=256, out_channels=256*4, kernel_size=3, stride=1, padding=1, bias=False),
nn.PixelShuffle(2),
)
self.conv_output = nn.Conv2d(in_channels=256, out_channels=3, kernel_size=3, stride=1, padding=1, bias=False)
self.add_mean = MeanShift(rgb_mean, 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
if m.bias is not None:
m.bias.data.zero_()
def make_layer(self, block, num_of_layer):
layers = []
for _ in range(num_of_layer):
layers.append(block())
return nn.Sequential(*layers)
def forward(self, x):
out = self.sub_mean(x)
out = self.conv_input(out)
residual = out
out = self.conv_mid(self.residual(out))
out = torch.add(out,residual)
out = self.upscale4x(out)
out = self.conv_output(out)
out = self.add_mean(out)
return out