-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbolic_execution.py
316 lines (265 loc) · 9.72 KB
/
symbolic_execution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import poly_arithmetic as pa
values = {}
allowed_characters_int = [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"0"
]
allowed_characters_float = allowed_characters_int + ['.']
allowed_characters_imag = allowed_characters_float + ['i']
def find_letter(letter, lst):
return any(letter in word for word in lst)
def check_symbols(string, lst):
if not all(find_letter(l, lst) for l in string):
raise ValueError("Symbol not accepted in " + string)
def symbols_in_list(string, lst):
if not all(find_letter(l, lst) for l in string):
return False
else:
return True
def get_real(string):
'''turns a string reprenting a float into a Complex object'''
check_symbols(string, allowed_characters_float)
if len(string.split('.')) > 2:
raise ValueError("Too many points in " + string)
return pa.Complex(float(string), 0)
def get_imag(string):
'''turns a string reprenting an imaginary number into a Complex object'''
check_symbols(string, allowed_characters_imag)
if string == 'i':
return pa.Complex(0,1)
split = string.split("i")
if len(split) != 2 or split[1] != '':
raise ValueError("Weird imaginary: " + string)
return pa.Complex(0, float(split[0]))
def get_unitary_complex(string):
'''Turns a string representing a real or imaginary number into a Complex object'''
check_symbols(string, allowed_characters_imag)
if 'i' in string:
return get_imag(string)
else:
return get_real(string)
def break_parenthesis(string):
'''Recursively remove the parenthesis from the string, replacing each parenthesised term with a list.
The result of this operation is essentially a tree, where each node is a list and each leaf is a string'''
### We only handle the first highest order parenthesis. The other ones are dealt with recursively
opened_p = string.split('(')
closed_p = string.split(')')
opened_p_count = len(opened_p)
closed_p_count = len(closed_p)
if opened_p_count != closed_p_count:
raise ValueError("Wrong parenthesis: " + string)
if opened_p_count == 1:
return [string]
### This is the begging of the first parenthesised term, we want to find the right closing symbol
first_opened_p = len(opened_p[0])
sub_p_opened = 0
for i in range(first_opened_p + 1, len(string)):
if string[i] == '(':
sub_p_opened += 1
elif string[i] == ')' and sub_p_opened > 0:
sub_p_opened -= 1
elif string[i] == ')':
first_closed_p = i
break
### Nested parenthesis are dealt with in this recursion
ret = [break_parenthesis(string[first_opened_p+1:first_closed_p])]
if first_opened_p > 0:
ret = [string[:first_opened_p]] + ret
if first_closed_p < len(string) - 1:
### Subsequent parenthesis are dealt with in this recursion
ret += break_parenthesis(string[first_closed_p+1:])
return ret
def remove_subtract(string):
'''Recursively replace any "-" term with the terms "+", "-1" and "*", and returns the result as a list'''
if not isinstance(string, str):
raise TypeError
if not '-' in string:
return [string]
new_lst = []
first_subtract = len(string.split('-')[0])
if first_subtract == 0:
return ['+', pa.Complex(-1,0), '*'] + remove_subtract(string[1:])
elif first_subtract == len(string)-1:
return [string[:-1], '+', pa.Complex(-1,0), '*']
else:
return [string[:first_subtract], '+', pa.Complex(-1,0), '*']+remove_subtract(string[first_subtract+1:])
def separate_ops(string):
'''Recursively split strings containing an operation to isolate operation symbols, and returns a list'''
first_op = None
for i in range(len(string)):
if Evaluator.is_operation(string[i]):
first_op = i
break
if first_op is None or len(string) == 1:
return [string]
elif first_op == 0:
return [string[first_op]] + separate_ops(string[1:])
elif first_op is len(string)-1:
return [string[:-1], string[-1]]
else:
return [string[:first_op], string[first_op]] + separate_ops(string[first_op+1:])
def compute_operation(lst, symbol, fun):
'''for every time "symbol" is found in lst, apply "fun" as a binary operator on the terms directly to the left and right'''
new_lst = []
skip_next = False
for i in range(len(lst)):
if skip_next:
skip_next = False
continue
if lst[i] == symbol:
new_lst[-1] = fun(new_lst[-1], lst[i+1])
skip_next = True
else:
new_lst.append(lst[i])
return new_lst
class Evaluator:
'''Type that is meant to represent either a whole expression, or a parenthesised sub-expression.
It contains every term in a list, with either numbers, operation symbol, or an Evaluator sub-expression.
This list essentially forms an operation tree.'''
def __init__(self, expression_lst):
'''construct an expression tree where each number or operation is a leaf,
and each sub-expression is a node'''
self.expressions = []
if not isinstance(expression_lst, list):
raise TypeError("Evaluator init: wring input type")
### We replace each sub-list with an instantiation of Evaluator
for e in expression_lst:
if isinstance(e, list):
self.expressions.append(Evaluator(e))
elif isinstance(e, str):
self.expressions.append(e)
else:
raise TypeError("Evaluator init: input must be a tree formed with only lists and strings")
### Every subtract operation is replaced here "+ (-1) *"
self.handle_subtract()
### Expands any string terms like "3*5*" to a sequence "3","*","5","*"
self.break_operations()
### Some sanity checks are made to verify the validity of the string:
### no 2 consecutive operations and no operation at the beginning or end of expression
if self.operation_at_begin_or_end():
raise ValueError("Evaluator: an expression starts or end with an operation")
if self.consecutive_operation():
raise ValueError("Evaluator: there are consecutive operations in the expression")
### This is were we replace any Scalar value with a true numeric object, either from reading the string, or getting an existing value from "values"
self.make_numbers()
def __str__(exp):
'''pretty print to actually see complex number values when printing'''
ret = ""
for e in exp:
if Evaluator.is_operation(e):
ret += str(e) + " "
else:
ret += "(" + str(e) + ") "
return ret
def evaluate(self):
'''evaluate the expression into a single numeric object'''
new_expressions = []
### Replace any subexpression with an actual value
for e in self.expressions:
if isinstance(e, Evaluator):
new_expressions.append(e.evaluate())
else:
new_expressions.append(e)
### The order is where we implement the priority of multiplication over addition
new_expressions = compute_operation(new_expressions, "*", pa.Complex.__mul__)
new_expressions = compute_operation(new_expressions, "+", pa.Complex.__add__)
if len(new_expressions) != 1:
raise ValueError("Could not reduce every term when evaluating")
return new_expressions[0]
def handle_subtract(self):
'''replace any "-" symbol with sumoething equivalent of "+(-1)*"'''
new_expressions = []
for e in self.expressions:
if not isinstance(e, str):
new_expressions.append(e)
elif not '-' in e:
new_expressions.append(e)
else:
new_expressions += remove_subtract(e)
self.expressions = new_expressions
def break_operations(self):
'''Expands all string terms containing operations to isolate operation symbols'''
new_expressions = []
for e in self.expressions:
if not isinstance(e, str):
new_expressions.append(e)
else:
new_expressions += separate_ops(e)
self.expressions = new_expressions
def is_operation(char):
return char == '+' or char == '*'
def operation_at_begin_or_end(self):
begin = self.expressions[0]
if isinstance(begin, str) and Evaluator.is_operation(begin):
return True
end = self.expressions[-1]
if isinstance(end, str) and Evaluator.is_operation(end):
return True
return False
def consecutive_operation(self):
last_item_was_operation = False
for e in self.expressions:
if Evaluator.is_operation(e):
if last_item_was_operation:
return True
last_item_was_operation = True
else:
last_item_was_operation = False
return False
def make_numbers(self):
'''Replace any purely scalar term with a numeric object'''
new_expressions = []
for e in self.expressions:
if not isinstance(e, str):
new_expressions.append(e)
elif Evaluator.is_operation(e):
new_expressions.append(e)
elif symbols_in_list(e, allowed_characters_imag):
new_expressions.append(get_unitary_complex(e))
else:
new_expressions.append(values[e])
self.expressions = new_expressions
def evaluate_complex_number(string):
'''Evaluate the expression in the string as a RHS if possible'''
### First remove all spaces in the string
string = "".join(string.split(" "))
### Remove all parenthesis, converting them into sub lists
string_lst = break_parenthesis(string)
### Convert to a special types to handle sub-expressions easily
evaluator = Evaluator(string_lst)
return evaluator.evaluate()
def start_interface():
print("Starting interface. Enter q to leave")
while True:
### User input
expression = input(">> ")
### Quitting
if expression == 'q':
print('exit')
break
### Definition
elif '=' in expression:
parts = expression.split('=')
if len(parts) != 2:
print("Error, try again.")
name = "".join(parts[0].split(" "))
if not name.isalpha():
print("Names must have only letters")
continue
values[name] = evaluate_complex_number(parts[1])
### Evaluation
else:
try:
print(evaluate_complex_number(expression))
except:
print("Error, try again.")
if __name__ == "__main__":
start_interface()