-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatistics.go
125 lines (94 loc) · 2.63 KB
/
statistics.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
package statistics
import (
"fmt"
"math"
"sort"
"github.com/twgophers/collections"
"github.com/twgophers/linalg"
)
func Sum(sample collections.Vector) float64 {
total := 0.0
for _, value := range sample {
total += value
}
return total
}
func Mean(sample collections.Vector) float64 {
check(sample)
return Sum(sample) / float64(len(sample))
}
func Median(sample collections.Vector) float64 {
check(sample)
sort.Float64s(sample)
half := len(sample) / 2
if oddSize(sample) {
return sample[half]
}
return Mean(collections.Vector{sample[half-1], sample[half]})
}
func Quantile(sample collections.Vector, percentile float64) float64 {
pIndex := int(percentile * float64(len(sample)))
sort.Float64s(sample)
return sample[pIndex]
}
func Mode(sample collections.Vector) collections.Vector {
check(sample)
counter := collections.NewCounter(sample)
maxQuantity := counter.MaxValue()
modes := make(collections.Vector, 0, len(sample))
for k, v := range counter.Items {
if v == maxQuantity {
modes = append(modes, k)
}
}
sort.Slice(modes, func(i, j int) bool { return modes[j] < modes[i] })
return modes
}
func DataRange(sample collections.Vector) float64 {
return sample.Max() - sample.Min()
}
func DispersionMean(sample collections.Vector) collections.Vector {
mean := Mean(sample)
dispersion := make(collections.Vector, 0, cap(sample))
for _, value := range sample {
dispersion = append(dispersion, value-mean)
}
return dispersion
}
func Variance(sample collections.Vector) float64 {
checkMinimumSize(len(sample), 1)
dispersionMean := DispersionMean(sample)
return linalg.SumOfSquares(dispersionMean) / float64(len(sample)-1)
}
func StandardDeviation(sample collections.Vector) float64 {
return math.Sqrt(Variance(sample))
}
func InterQuantileRange(sample collections.Vector) float64 {
return Quantile(sample, 0.75) - Quantile(sample, 0.25)
}
func Covariance(x, y collections.Vector) float64 {
n := len(x)
checkMinimumSize(n, 1)
return linalg.Dot(DispersionMean(x), DispersionMean(y)) / float64(n-1)
}
func Correlation(x, y collections.Vector) float64 {
standardDeviationX := StandardDeviation(x)
standardDeviationY := StandardDeviation(y)
if standardDeviationX > 0 && standardDeviationY > 0 {
return Covariance(x, y) / standardDeviationX / standardDeviationY
}
return float64(0)
}
func checkMinimumSize(value, minimum int) {
if value <= minimum {
panic(fmt.Errorf("The minimum size was not obeyed - %d", minimum))
}
}
func oddSize(sample collections.Vector) bool {
return len(sample)%2 == 1
}
func check(sample collections.Vector) {
if sample.Empty() {
panic("Operation Not allowed with empty sample")
}
}