-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconv_nets.py
104 lines (88 loc) · 3.83 KB
/
conv_nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
import torch.nn as tnn
from e2cnn import gspaces
import e2cnn.nn as nn
class CNN(tnn.Module):
def __init__(self, input_shape):
'''
Args:
input_size int, optional): width dimension of square image with 3 channels
'''
super().__init__()
self.input_shape = input_shape
self.conv_out_channels = 4
self.conv = tnn.Sequential(
tnn.Conv2d(3, 16, kernel_size=3, padding=1),
tnn.ReLU(True),
tnn.MaxPool2d(kernel_size=3),
tnn.Conv2d(16, 16, kernel_size=3, padding=1),
tnn.ReLU(True),
tnn.MaxPool2d(kernel_size=2),
tnn.Conv2d(16, 16, kernel_size=3, padding=1),
tnn.ReLU(True),
tnn.MaxPool2d(kernel_size=2),
tnn.Conv2d(16, self.conv_out_channels, kernel_size=3, padding=1),
tnn.ReLU(True),
tnn.AvgPool2d(kernel_size=2)
)
self.output_size = self.forward(torch.zeros(*input_shape).unsqueeze(0)).flatten().shape[0]
def forward(self, x):
x = self.conv(x)
return x.flatten(1)
class R2EquiCNN(tnn.Module):
def __init__(self, input_shape, N=8):
'''
Args:
input_shape (tuple, optional): Shape of the image (C, H, W). Should be square.
N: number of discrete rotations
'''
super().__init__()
# (B, C, H, W)
assert input_shape[1] == input_shape[2], "Input image should be square"
self.N = N
self.input_shape = input_shape
self.conv_out_channels = 4
self.r2_act = gspaces.Rot2dOnR2(N)
self.conv = torch.nn.Sequential(
# 128x128
nn.R2Conv(nn.FieldType(self.r2_act, input_shape[0]*[self.r2_act.trivial_repr]),
nn.FieldType(self.r2_act, 16*[self.r2_act.regular_repr]),
kernel_size=3, padding=1),
nn.ReLU(nn.FieldType(self.r2_act, 16 * \
[self.r2_act.regular_repr]), inplace=True),
nn.PointwiseMaxPool(nn.FieldType(
self.r2_act, 16*[self.r2_act.regular_repr]), 3),
# 64x64
nn.R2Conv(nn.FieldType(self.r2_act, 16 * [self.r2_act.regular_repr]),
nn.FieldType(self.r2_act, 16 * \
[self.r2_act.regular_repr]),
kernel_size=3, padding=1),
nn.ReLU(nn.FieldType(self.r2_act, 16 * \
[self.r2_act.regular_repr]), inplace=True),
nn.PointwiseMaxPool(nn.FieldType(
self.r2_act, 16 * [self.r2_act.regular_repr]), 2),
# 32x32
nn.R2Conv(nn.FieldType(self.r2_act, 16 * [self.r2_act.regular_repr]),
nn.FieldType(self.r2_act, 16 * \
[self.r2_act.regular_repr]),
kernel_size=3, padding=1),
nn.ReLU(nn.FieldType(self.r2_act, 16 * \
[self.r2_act.regular_repr]), inplace=True),
nn.PointwiseMaxPool(nn.FieldType(
self.r2_act, 16 * [self.r2_act.regular_repr]), 2),
# 16x16
nn.R2Conv(nn.FieldType(self.r2_act, 16 * [self.r2_act.regular_repr]),
nn.FieldType(
self.r2_act, self.conv_out_channels * [self.r2_act.regular_repr]),
kernel_size=3, padding=1),
nn.ReLU(nn.FieldType(self.r2_act, self.conv_out_channels * \
[self.r2_act.regular_repr])),
# get equivariant feature vector
nn.PointwiseAvgPool(nn.FieldType(
self.r2_act, self.conv_out_channels * [self.r2_act.regular_repr]), 4)
)
def forward(self, x):
return self.conv(x).flatten(1)
if __name__ == '__main__':
conv = CNN((3, 128, 128))
print(conv.output_size)