-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
209 lines (187 loc) · 8.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import random
import numpy as np
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader, TensorDataset, RandomSampler
import param
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids=None, input_mask=None, segment_ids=None,label_id=None,exm_id=None):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.exm_id = exm_id
class InputFeaturesED(object):
"""A single set of features of data for ED."""
def __init__(self, input_ids, attention_mask,label_id):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.label_id = label_id
def CSV2Array(path):
"""Read data from csv"""
data = pd.read_csv(path, encoding='latin')
pairs, labels = data.pairs.values.tolist(), data.labels.values.tolist()
return pairs, labels
def make_cuda(tensor):
"""Use CUDA if it's available."""
if torch.cuda.is_available():
tensor = tensor.cuda()
return tensor
def init_random_seed(manual_seed):
"""Init random seed."""
if manual_seed is None:
seed = random.randint(1, 10000)
else:
seed = manual_seed
print("use random seed: {}".format(seed))
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def init_model(args, net, restore=None):
""" restore model weights """
if restore is not None:
path = os.path.join(param.model_root, args.src, args.model, str(args.train_seed), restore)
if os.path.exists(path):
net.load_state_dict(torch.load(path))
print("Restore model from: {}".format(os.path.abspath(path)))
""" check if cuda is available """
if torch.cuda.is_available():
cudnn.benchmark = True
net.cuda()
return net
def save_model(args, net, name):
"""Save trained model."""
folder = os.path.join(param.model_root, args.src, args.model, str(args.train_seed))
path = os.path.join(folder, name)
if not os.path.exists(folder):
os.makedirs(folder)
torch.save(net.state_dict(), path)
print("save pretrained model to: {}".format(path))
def convert_examples_to_features(pairs, labels, max_seq_length, tokenizer,
cls_token='[CLS]', sep_token='[SEP]',
pad_token=0,csv_writer=None,exp_idx=-1):
features = []
for ex_index, (pair, label) in enumerate(zip(pairs, labels)):
if (ex_index + 1) % 200 == 0:
print("writing example %d of %d" % (ex_index + 1, len(pairs)))
# add ER situation
if sep_token in pair:
left = pair.split(sep_token)[0]
right = pair.split(sep_token)[1]
ltokens = tokenizer.tokenize(left)
rtokens = tokenizer.tokenize(right)
more = len(ltokens) + len(rtokens) - max_seq_length + 3
if more > 0:
if more <len(rtokens) : # remove excessively long string
rtokens = rtokens[:(len(rtokens) - more)]
elif more <len(ltokens):
ltokens = ltokens[:(len(ltokens) - more)]
else:
print("too long!")
continue
tokens = [cls_token] + ltokens + [sep_token] + rtokens + [sep_token]
segment_ids = [0]*(len(ltokens)+2) + [1]*(len(rtokens)+1)
else:
tokens = tokenizer.tokenize(pair)
if len(tokens) > max_seq_length - 2:
tokens = tokens[:(max_seq_length - 2)]
tokens = [cls_token] + tokens + [sep_token]
segment_ids = [0]*(len(tokens))
if ex_index == exp_idx:
"""This is for recording attention"""
with open('tokens.csv', 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(tokens)
with open('token_type_ids.csv', 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(segment_ids)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
padding_length = max_seq_length - len(input_ids)
input_ids = input_ids + ([pad_token] * padding_length)
input_mask = input_mask + ([0] * padding_length)
segment_ids = segment_ids + ([0] * padding_length)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids = segment_ids,
label_id=label,
exm_id=ex_index))
if csv_writer != None:
"""Record training data for semi"""
csv_writer.writerow([ex_index, pair, label])
return features
def get_data_loader(features, batch_size,flag):
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
all_exm_ids = torch.tensor([f.exm_id for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask,all_segment_ids, all_label_ids,all_exm_ids)
sampler = RandomSampler(dataset)
if flag == "dev":
"""Read all data"""
dataloader = DataLoader(dataset, sampler=sampler, batch_size=batch_size)
else:
"""Delet the last incomplete epoch"""
dataloader = DataLoader(dataset, sampler=sampler, batch_size=batch_size, drop_last=True)
return dataloader
def get_data_loaderED(features, batch_size,flag):
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask,all_label_ids)
sampler = RandomSampler(dataset)
if flag == "dev":
dataloader = DataLoader(dataset, sampler=sampler, batch_size=batch_size)
else:
dataloader = DataLoader(dataset, sampler=sampler, batch_size=batch_size, drop_last=True)
return dataloader
def bart_convert_examples_to_features(pairs, labels, max_seq_length, tokenizer, pad_token=0, cls_token='<s>',sep_token='</s>'):
features = []
for ex_index, (pair, label) in enumerate(zip(pairs, labels)):
if (ex_index + 1) % 200 == 0:
print("writing example %d of %d" % (ex_index + 1, len(pairs)))
if sep_token in pair:
left = pair.split(sep_token)[0]
right = pair.split(sep_token)[1]
ltokens = tokenizer.tokenize(left)
rtokens = tokenizer.tokenize(right)
more = len(ltokens) + len(rtokens) - max_seq_length + 3
if more > 0:
if more <len(rtokens) : #从rtokens中删除多余的部分
rtokens = rtokens[:(len(rtokens) - more)]
elif more <len(ltokens):
ltokens = ltokens[:(len(ltokens) - more)]
else:
print("bad example!")
continue
tokens = [cls_token] +ltokens + [sep_token] + rtokens + [sep_token]
segment_ids = [0]*(len(ltokens)+2) + [1]*(len(rtokens)+1)
else:
tokens = tokenizer.tokenize(pair)
if len(tokens) > max_seq_length - 2:
tokens = tokens[:(max_seq_length - 2)]
tokens = [cls_token] + tokens + [sep_token]
segment_ids = [0]*(len(tokens))
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
padding_length = max_seq_length - len(input_ids)
input_ids = input_ids + ([pad_token] * padding_length)
input_mask = input_mask + ([0] * padding_length)
features.append(InputFeaturesED(input_ids=input_ids,
attention_mask=input_mask,
label_id=label
))
return features
def MMD(source, target):
"""Compute MMD"""
mmd_loss = torch.exp(-1 / (source.mean(dim=0) - target.mean(dim=0)).norm())
return mmd_loss