-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvisualize_qualitative_results_VIGOR.py
156 lines (124 loc) · 6.21 KB
/
visualize_qualitative_results_VIGOR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
# os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
# os.environ['CUDA_VISIBLE_DEVICES'] = "7"
# os.environ["MKL_NUM_THREADS"] = "4"
# os.environ["NUMEXPR_NUM_THREADS"] = "4"
# os.environ["OMP_NUM_THREADS"] = "4"
import argparse
from torch.utils.data import Dataset
from torchvision import transforms
import torch
import torch.nn as nn
import numpy as np
import math
from models import CVM_VIGOR_ori_prior as CVM
from datasets import VIGORDataset
import PIL.Image
from PIL import ImageFile
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
parser = argparse.ArgumentParser()
parser.add_argument('--area', type=str, help='samearea or crossarea', default='samearea')
parser.add_argument('--pos_only', choices=('True','False'), default='True')
parser.add_argument('--ori_noise', type=float, help='noise in orientation prior, 180 means unknown orientation', default=180.)
parser.add_argument('--idx', type=int, help='image index')
args = vars(parser.parse_args())
area = args['area']
idx = args['idx']
ori_noise = args['ori_noise']
ori_noise = 18 * (ori_noise // 18) # round the closest multiple of 18 degrees within prior
pos_only = args['pos_only'] == 'True'
dataset_root='/scratch/zxia/datasets/VIGOR'
test_model_path = 'models/VIGOR/samearea/model.pt'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(17)
np.random.seed(0)
transform_grd = transforms.Compose([
transforms.Resize([320, 640]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_sat = transforms.Compose([
# resize
transforms.Resize([512, 512]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
vigor = VIGORDataset(dataset_root, split=area, train=False, pos_only=pos_only, transform=(transform_grd, transform_sat), ori_noise=ori_noise)
invTrans = transforms.Compose([ transforms.Normalize(mean = [ 0., 0., 0. ],
std = [ 1/0.229, 1/0.224, 1/0.225 ]),
transforms.Normalize(mean = [ -0.485, -0.456, -0.406 ],
std = [ 1., 1., 1. ]),
])
torch.cuda.empty_cache()
CVM_model = CVM(device, ori_noise)
CVM_model.load_state_dict(torch.load(test_model_path))
CVM_model.to(device)
CVM_model.eval()
grd, sat, gt, _, orientation, city, _ = vigor.__getitem__(idx)
grd_feed = grd.unsqueeze(0)
sat_feed = sat.unsqueeze(0)
grd_feed = grd_feed.to(device)
sat_feed = sat_feed.to(device)
grd = invTrans(grd)
sat = invTrans(sat)
logits_flattened, heatmap, ori, matching_score_stacked, matching_score_stacked2, matching_score_stacked3, matching_score_stacked4, matching_score_stacked5, matching_score_stacked6 = CVM_model(grd_feed, sat_feed)
matching_score_max1, _ = torch.max(matching_score_stacked, dim=1, keepdim=True)
matching_score_max2, _ = torch.max(matching_score_stacked2, dim=1, keepdim=True)
matching_score_max3, _ = torch.max(matching_score_stacked3, dim=1, keepdim=True)
matching_score_max4, _ = torch.max(matching_score_stacked4, dim=1, keepdim=True)
matching_score_max5, _ = torch.max(matching_score_stacked5, dim=1, keepdim=True)
matching_score_max6, _ = torch.max(matching_score_stacked6, dim=1, keepdim=True)
# grd = grd.cpu().detach().numpy()
# sat = sat.cpu().detach().numpy()
gt = gt.permute(1, 2, 0)
gt = gt.cpu().detach().numpy()
loc_gt = np.unravel_index(gt.argmax(), gt.shape)
orientation = orientation.permute(1, 2, 0).cpu().detach().numpy()
heatmap = torch.squeeze(heatmap, dim=0).permute(1, 2, 0)
heatmap = heatmap.cpu().detach().numpy()
loc_pred = np.unravel_index(heatmap.argmax(), heatmap.shape)
ori = torch.squeeze(ori, dim=0).permute(1, 2, 0)
ori = ori.cpu().detach().numpy()
cos_pred_dense = ori[:, :, 0]
sin_pred_dense = ori[:, :, 1]
cos_pred, sin_pred = ori[loc_pred[0], loc_pred[1], :]
cos_gt, sin_gt = orientation[loc_gt[0], loc_gt[1], :]
a_acos_gt = math.acos(cos_gt)
if sin_gt < 0:
angle_gt = math.degrees(-a_acos_gt) % 360
else:
angle_gt = math.degrees(a_acos_gt)
plt.figure(figsize=(8,12))
plt.imshow( grd.permute(1, 2, 0) )
plt.axvline(grd.size()[2]/2, color='g')
plt.axis('off')
plt.savefig('figures/'+area+'_'+str(idx)+'_grd_'+'.png', bbox_inches='tight', pad_inches=0)
# plt.figure(figsize=(16,10))
# plt.subplot(2,3,1)
# plt.imshow(torch.squeeze(matching_score_max1, dim=0).permute(1, 2, 0).cpu().detach().numpy() )
# plt.subplot(2,3,2)
# plt.imshow(torch.squeeze(matching_score_max2, dim=0).permute(1, 2, 0).cpu().detach().numpy() )
# plt.subplot(2,3,3)
# plt.imshow(torch.squeeze(matching_score_max3, dim=0).permute(1, 2, 0).cpu().detach().numpy() )
# plt.subplot(2,3,4)
# plt.imshow(torch.squeeze(matching_score_max4, dim=0).permute(1, 2, 0).cpu().detach().numpy() )
# plt.subplot(2,3,5)
# plt.imshow(torch.squeeze(matching_score_max5, dim=0).permute(1, 2, 0).cpu().detach().numpy() )
# plt.subplot(2,3,6)
# plt.imshow(torch.squeeze(matching_score_max6, dim=0).permute(1, 2, 0).cpu().detach().numpy() )
plt.figure(figsize=(6,6))
plt.imshow( sat.permute(1, 2, 0) )
plt.imshow(heatmap, norm=LogNorm(vmax=np.max(heatmap)), alpha=0.6, cmap='Reds')
plt.scatter(loc_gt[1], loc_gt[0], s=300, marker='^', facecolor='g', label='GT', edgecolors='white')
plt.scatter(loc_pred[1], loc_pred[0], s=300, marker='*', facecolor='gold', label='Ours', edgecolors='white')
xx,yy = np.meshgrid(np.linspace(0,512,512),np.linspace(0,512,512))
cos_angle = ori[:,:,0]
sin_angle = ori[:,:,1]
plt.quiver(xx[::40, ::40], yy[::40, ::40], -sin_pred_dense[::40, ::40], cos_pred_dense[::40, ::40], linewidths=0.2, scale=14, width=0.01) # plot the predicted rotation angle + 90 degrees
plt.quiver(loc_pred[1], loc_pred[0], -sin_pred, cos_pred, color='gold', linewidths=0.2, scale=10, width=0.015)
plt.quiver(loc_gt[1], loc_gt[0], -np.sin(angle_gt / 180 * np.pi), np.cos(angle_gt / 180 * np.pi), color='g', linewidths=0.2, scale=10, width=0.015)
plt.axis('off')
plt.legend(loc=2, framealpha=0.8, labelcolor='black', prop={'size': 15})
plt.savefig('figures/'+area+'_'+str(idx)+'_noise_in_orientation_'+str(ori_noise)+'.png', bbox_inches='tight', pad_inches=0)
print('Images are written to figures/')