forked from KendallPark/genetic-algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GeneticAlgorithm.py
140 lines (122 loc) · 3.86 KB
/
GeneticAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Kendall Park
# Filename: GeneticAlgorithm.py
import random
# 1. [Start] Generate random population of n chromosomes (suitable solutions for the problem)
# 2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population
# 3. [New population] Create a new population by repeating following steps until the new population is complete
# A. [Selection] Select two parent chromosomes from a population according to their fitness (the better fitness, the bigger chance to be selected)
# B. [Crossover] With a crossover probability cross over the parents to form a new offspring (children). If no crossover was performed, offspring is an exact copy of parents.
# C. [Mutation] With a mutation probability mutate new offspring at each locus (position in chromosome).
# D. [Accepting] Place new offspring in a new population
# 4. [Replace] Use new generated population for a further run of algorithm
# 5. [Test] If the end condition is satisfied, stop, and return the best solution in current population
# 6 [Loop] Go to step 2
def knapsack(V, W, MAX, popSize, mut, maxGen, percent):
generation = 0
pop = generate(V, popSize)
fitness = getFitness(pop, V, W, MAX)
while(not test(fitness, percent) and generation < maxGen):
generation += 1
pop = newPopulation(pop, fitness, mut)
fitness = getFitness(pop, V, W, MAX)
#print fitness
#print generation
return selectElite(pop, fitness)
def generate(V, popSize):
length = len(V)
pop = [[random.randint(0,1) for i in range(length)] for j in range(popSize)]
#print pop
return pop
def getFitness(pop, V, W, MAX):
fitness = []
for i in range(len(pop)):
weight = 0
volume = MAX+1
while (volume > MAX):
weight = 0
volume = 0
ones = []
for j in range(len(pop[i])):
if pop[i][j] == 1:
volume += V[j]
weight += W[j]
ones += [j]
if volume > MAX:
pop[i][ones[random.randint(0, len(ones)-1)]] = 0
fitness += [weight]
#print "Modified Population:"
#print pop
#print "Fitness of Population:"
#print fitness
return fitness
def newPopulation(pop, fit, mut):
popSize = len(pop)
newPop = []
newPop += [selectElite(pop, fit)]
#print "Elite:"
#print newPop
while(len(newPop) < popSize):
(mate1, mate2) = select(pop, fit)
newPop += [mutate(crossover(mate1, mate2), mut)]
#print "After Selection"
#print newPop
return newPop
def selectElite(pop, fit):
elite = 0
for i in range(len(fit)):
if fit[i] > fit[elite]:
elite = i
return pop[elite]
def select(pop, fit):
size = len(pop)
totalFit = sum(fit)
lucky = random.randint(0, totalFit)
tempSum = 0
mate1 = []
fit1 = 0
for i in range(size):
tempSum += fit[i]
if tempSum >= lucky:
mate1 = pop.pop(i)
fit1 = fit.pop(i)
break
tempSum = 0
lucky = random.randint(0, sum(fit))
for i in range(len(pop)):
tempSum += fit[i]
if tempSum >= lucky:
mate2 = pop[i]
pop += [mate1]
fit += [fit1]
return (mate1, mate2)
def crossover(mate1, mate2):
lucky = random.randint(0, len(mate1)-1)
#print "Lucky: " + str(lucky)
return mate1[:lucky]+mate2[lucky:]
def mutate(gene, mutate):
for i in range(len(gene)):
lucky = random.randint(1, mutate)
if lucky == 1:
#print "MUTATED!"
gene[i] = bool(gene[i])^1
return gene
def test(fit, rate):
maxCount = mode(fit)
if float(maxCount)/float(len(fit)) >= rate:
return True
else:
return False
def mode(fit):
values = set(fit)
maxCount = 0
for i in values:
if maxCount < fit.count(i):
maxCount = fit.count(i)
return maxCount
volume = [1, 3, 2, 3, 2, 3, 3]
weights = [2, 100, 5, 3, 50, 16, 60]
maxVolume = 6
popSize = 10
#print crossover(volume, weights)
#print mutate([1, 1, 1, 1, 1, 1, 1, 1, 1])
#print "FINAL SOLUTION: " + str(knapsack(volume, weights, maxVolume, popSize))