-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
313 lines (278 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# -*- coding: utf-8 -*-
""" Main training script
Author: Ho Tuan Vu - Japan Advanced Institute of Science and Technology
Revision: 1.0
"""
import matplotlib
matplotlib.use("Agg")
from os.path import join, exists
import json
import argparse
import subprocess
from distributed import init_distributed, apply_gradient_allreduce, reduce_tensor
from utils.logger import DataLogger
from utils.common_utils import *
from time import localtime, strftime
from data_utils.MelSpectrumDataset import MelSpectrumDataset, MelSpectrumCollateFn
from data_utils.CepstrumDataset import MelCepstrumDataset, MelCepstrumCollateFn
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from models.vqvae_3stage import VQVAE3Stage
from models.vqvae_2stage import VQVAE2Stage
from models.vqvae_1stage import VQVAE1Stage
from torch.optim import Adam
from progressbar import progressbar
from utils.synthesizer import PWGSynthesizer
import librosa
def train(model_name, train_list, max_seq_len, batch_size, train_epoch,
learning_rate, iters_per_checkpoint, iters_per_eval,
n_warm_up_epoch, warm_up_lr, checkpoint_dir, use_f0=True, preload_data=False,
checkpoint_path="", seed=12345, num_gpus=1, rank=0, group_name=""):
torch.manual_seed(seed)
if num_gpus > 1:
init_distributed(rank=rank, num_gpus=num_gpus, group_name=group_name, **dist_configs)
timestamp = strftime("%Y%m%d_%H%M_" + checkpoint_dir, localtime())
output_path = join("checkpoints/", timestamp)
dataset = MelCepstrumDataset(train_list, use_f0=use_f0, preload_data=preload_data)
if rank == 0:
print("Checkpoint dir: %s" % output_path)
if not exists(output_path):
os.makedirs(output_path)
subprocess.run(["cp", "-r", args.config, "modules", "models", output_path])
with open(join(output_path, "speaker_label.json"), "w") as f:
json.dump(dataset.speaker_label, f)
train_sampler = DistributedSampler(dataset) if num_gpus > 1 else None
print("Data directory: ", train_list)
print("No. training data: ", len(dataset))
print("No. speakers:", dataset.n_speaker)
print("Normalize: ", model_configs["norm"])
print("Use F0: ", use_f0)
collate_fn = MelCepstrumCollateFn(max_seq_len=max_seq_len)
dataloader = DataLoader(dataset=dataset,
sampler=train_sampler,
batch_size=batch_size//num_gpus,
collate_fn=collate_fn,
num_workers=4,
pin_memory=True,
shuffle=False)
model = None
if model_name == "VQVAE3Stage":
model = VQVAE3Stage(n_speaker=dataset.n_speaker, **model_configs).cuda()
elif model_name == "VQVAE2Stage":
model = VQVAE2Stage(n_speaker=dataset.n_speaker, **model_configs).cuda()
elif model_name == "VQVAE1Stage":
model = VQVAE1Stage(n_speaker=dataset.n_speaker, **model_configs).cuda()
else:
print("Unsupported model name: %s" % model_name)
if checkpoint_path != "":
print(checkpoint_path)
model.load_state_dict(torch.load(checkpoint_path))
# =====START: ADDED FOR DISTRIBUTED======
if num_gpus > 1:
model = apply_gradient_allreduce(model)
# =====END: ADDED FOR DISTRIBUTED======
optimizer = Adam(model.parameters(), lr=warm_up_lr)
if rank == 0:
logger = DataLogger(logdir=join(output_path, "logs"))
validator = Validator(logger=logger,
speaker_label=dataset.speaker_label,
use_f0=use_f0,
**validation_configs)
else:
logger = None
validator = None
iteration = 0
for epoch in range(train_epoch):
model.train()
if train_sampler is not None:
train_sampler.set_epoch(epoch)
if rank == 0:
iterator = progressbar(dataloader, redirect_stdout=True)
else:
iterator = dataloader
for batch in iterator:
model.zero_grad()
batch = [batch[0].cuda(), batch[1].cuda()]
loss, loss_components = model(batch)
if num_gpus > 1:
reduced_loss = reduce_tensor(loss.data, num_gpus).item()
for i in range(len(loss_components)):
if isinstance(loss_components[i], list):
for j in range(len(loss_components[i])):
loss_components[i][j] = reduce_tensor(loss_components[i][j].data, num_gpus).item()
else:
loss_components[i] = reduce_tensor(loss_components[i].data, num_gpus).item()
else:
reduced_loss = loss.item()
for i in range(len(loss_components)):
if isinstance(loss_components[i], list):
for j in range(len(loss_components[i])):
loss_components[i][j] = loss_components[i][j].item()
else:
loss_components[i] = loss_components[i].item()
loss.backward()
optimizer.step()
if rank == 0:
rc_loss, mel_loss, vq_loss, commitment_loss, perplexity = loss_components
print("%d|%d: loss=%.2e, rc_loss=%.2e, mel_loss=%.2e, vq_loss=%.2e" %
(epoch, iteration, reduced_loss, rc_loss, mel_loss, vq_loss))
perplexity_tag = ["training/perplexity"] + [str(i) for i in range(len(perplexity))]
if logger is not None:
logger.log_training([reduced_loss, rc_loss, mel_loss, vq_loss, perplexity],
["training/loss", "training/rc_loss", "training/mel_loss",
"training/vq_loss", perplexity_tag],
iteration)
if (iteration % iters_per_eval) == 0:
torch.save(model.state_dict(), join(output_path, "weight_latest.pt"))
if validator is not None:
validator(model, iteration)
if (iteration % iters_per_checkpoint) == 0 and iteration > 0:
torch.save(model.state_dict(),
join(output_path, "weight_%d.pt" % iteration))
iteration += 1
if epoch < n_warm_up_epoch:
lr = min(learning_rate,
warm_up_lr - epoch * (warm_up_lr - learning_rate)/n_warm_up_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print("Finished!")
return
class Validator(object):
def __init__(self, logger: DataLogger, speaker_label,
test_mel_file, test_f0_file, target_speaker,
eval_list, max_seq_len, f0_stats_file, use_f0,
fs, synthesizer_configs, speaker_info_json=None):
self.fs = fs
eval_dataset = MelCepstrumDataset(eval_list, use_f0=use_f0)
eval_dataset.speaker_label = speaker_label
eval_dataset.n_speaker = len(speaker_label)
collate_fn = MelCepstrumCollateFn(max_seq_len=max_seq_len)
self.eval_dataloader = DataLoader(eval_dataset,
collate_fn=collate_fn,
batch_size=32,
shuffle=False)
source_speaker = test_mel_file.split("/")[-2]
self.mel_src = np.load(test_mel_file)
self.mel_tar = np.load(test_mel_file.replace(source_speaker, target_speaker))
src_len = self.mel_src.shape[-1]
self.mel_src = self.mel_src[:, :(src_len - src_len % 8)]
self.mcc_src = torch.from_numpy(eval_dataset.mel2mcc(self.mel_src)).float()
self.f0_src = np.load(test_f0_file)
self.f0_src = self.f0_src[:8 * (self.f0_src.shape[0]//8)]
with open(f0_stats_file, "r") as f:
f0_stats = json.load(f)
src_mean_f0, src_scale_f0 = f0_stats[source_speaker]
tar_mean_f0, tar_scale_f0 = f0_stats[target_speaker]
vuv = np.zeros(self.f0_src.shape[0])
vuv[self.f0_src > 0] = 1.
self.f0_tar = vuv * ((self.f0_src - src_mean_f0) * tar_scale_f0 / src_scale_f0 + tar_mean_f0)
self.f0_tar = torch.from_numpy(self.f0_tar).float().unsqueeze(0)
if use_f0:
self.mcc_src = torch.cat([self.mcc_src, self.f0_tar], dim=0)
self.mcc_src = self.mcc_src.unsqueeze(0).cuda()
print("mcc_src shape: ", self.mcc_src.shape)
self.target_id = speaker_label[target_speaker]
self.logger = logger
mel_src_fig = plt.figure(dpi=100, figsize=(9, 3))
plt.imshow(self.mel_src, aspect='auto', origin='lower', cmap='Blues')
plt.colorbar()
plt.title("Converted")
logger.add_figure("Validation/source", mel_src_fig, 0)
plt.close()
self.synthesizer = PWGSynthesizer(**synthesizer_configs)
audio_src = self.synthesizer.synthesize(self.mel_src)
audio_tar = self.synthesizer.synthesize(self.mel_tar)
logger.add_audio("Source", audio_src, sample_rate=self.fs)
logger.add_audio("Target", audio_tar, sample_rate=self.fs)
if speaker_info_json is not None:
with open(speaker_info_json, "r") as f:
speaker_info = json.load(f)
self.speaker_info = speaker_info
else:
self.speaker_info = None
def __call__(self, model, iteration):
rc_loss = []
mel_loss = []
vq_loss = []
model.eval()
with torch.no_grad():
for batch in progressbar(self.eval_dataloader):
model.zero_grad()
batch = [batch[0].cuda(), batch[1].cuda()]
_, loss_components = model(batch)
for i in range(len(loss_components)):
if isinstance(loss_components[i], list):
continue
else:
loss_components[i] = loss_components[i].item()
_rc_loss, _mel_loss, _vq_loss, _, _ = loss_components
rc_loss.append(_rc_loss)
mel_loss.append(_mel_loss)
vq_loss.append(_vq_loss)
rc_loss = np.mean(rc_loss)
mel_loss = np.mean(mel_loss)
vq_loss = np.mean(vq_loss)
model.eval()
speaker_id = torch.zeros([1, model.n_speaker])
speaker_id[0, self.target_id] = 1.0
with torch.no_grad():
mel_conv = model.inference([self.mcc_src,
speaker_id.cuda()]).squeeze().cpu().numpy()
audio_conv = self.synthesizer.synthesize(mel_conv)
emb = model.get_speaker_emb().cpu().numpy()
pca_emb = PCA(n_components=2)
emb_pca = pca_emb.fit_transform(emb)
emb_fig = plt.figure(dpi=150)
if self.speaker_info is None:
plt.scatter(emb_pca[:, 0], emb_pca[:, 1], alpha=0.8)
else:
speaker_list = list(self.speaker_info.keys())
idx_female = [i for i in range(len(speaker_list))
if self.speaker_info[speaker_list[i]]["gender"] == "F"]
idx_male = [i for i in range(len(speaker_list))
if self.speaker_info[speaker_list[i]]["gender"] == "M"]
plt.scatter(emb_pca[idx_female, 0], emb_pca[idx_female, 1], alpha=0.8, label="Female", marker="^")
plt.scatter(emb_pca[idx_male, 0], emb_pca[idx_male, 1], alpha=0.8, label="Male", marker="v")
plt.legend()
plt.grid(linestyle="--")
mel_fig = plt.figure(figsize=(9, 3), dpi=100)
plt.imshow(mel_conv, aspect='auto', origin='lower', cmap='Blues')
plt.colorbar()
plt.title("Converted")
self.logger.log_validation({"validation/rc_loss": rc_loss,
"validation/mel_loss": mel_loss,
"validation/vq_loss": vq_loss},
{"validation/synthesized": mel_fig,
"validation/speaker_embedding": emb_fig},
{"converted": audio_conv},
fs=self.fs,
iteration=iteration)
plt.close()
model.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--rank', type=int, default=0,
help='rank of process for distributed')
parser.add_argument('-g', '--group_name', type=str, default='',
help='name of group for distributed')
parser.add_argument('-c', '--config', type=str, required=True,
help='JSON file for configuration')
global args
args = parser.parse_args()
num_gpus = torch.cuda.device_count()
with open(args.config) as f:
config = json.load(f)
training_configs = config["training_configs"]
global dist_configs
dist_configs = config["dist_configs"]
global model_configs
model_configs = config["model_configs"]
global validation_configs
validation_configs = config["validation_configs"]
if num_gpus > 1:
if args.group_name == '':
print("Warning: Training on 1 GPU!")
num_gpus = 1
else:
print("Run distributed training on %d GPUs" % num_gpus)
train(num_gpus=num_gpus, rank=args.rank, group_name=args.group_name, **training_configs)