-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_cvq.py
391 lines (363 loc) · 18.3 KB
/
train_cvq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# -*- coding: utf-8 -*-
""" Main training script
Author: Ho Tuan Vu - Japan Advanced Institute of Science and Technology
Revision: 1.0
"""
import sys
import matplotlib
matplotlib.use("Agg")
from os.path import join, exists
import json
import argparse
import subprocess
from distributed import init_distributed, apply_gradient_allreduce, reduce_tensor
from utils.logger import DataLogger
from utils.common_utils import *
from utils.eer import calculate_err
from time import localtime, strftime
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from torch.optim import Adam
import torchaudio
from progressbar import *
import models
from data_utils.AudioAugmentDataset import AudioAugmentDataset, AudioAugmentCollateFn
from data_utils.AudioNoiseDataset import AudioNoiseDataset, AudioNoiseCollateFn
from scipy.io import wavfile
import random
from sklearn.decomposition import PCA
from pesq import pesq
def train(model_name, batch_size, train_epoch,
iters_per_checkpoint, iters_per_eval,
checkpoint_prefix, pretrain=True, max_batch_len=256,
augment_start_epoch=100, start_iteration=0, learning_rate=1e-3,
continue_from_cpt=False, checkpoint_path="",
decay_rate=0.98, use_fp16=True, seed=12345,
num_gpus=1, rank=0, group_name=""):
torch.manual_seed(seed)
if num_gpus > 1:
init_distributed(rank=rank, num_gpus=num_gpus, group_name=group_name, **dist_configs)
timestamp = strftime("%Y%m%d_%H%M_" + checkpoint_prefix, localtime())
output_path = join("checkpoints/", timestamp)
train_clean = True
if pretrain:
train_clean = False
print("Pretrain flags: ", pretrain)
print("Augmentation flags: ", train_clean)
checkpoint_dict = None
lr = learning_rate
if checkpoint_path != "":
print(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
if continue_from_cpt:
output_path = "/".join(checkpoint_path.split("/")[:-1])
assert exists(output_path)
start_iteration = checkpoint_dict["iteration"]
# dataset = AudioNoiseDataset(clean_dir_path=data_configs["clean_dir_path"], load_noisy=train_clean)
dataset = AudioAugmentDataset(file_list="file_lists/train_list.txt",
max_frames=256,
augmentation=train_clean)
if rank == 0:
print("Checkpoint dir: %s" % output_path)
if not exists(output_path):
os.makedirs(output_path)
subprocess.run(["cp", "-r", args.config, "data_utils", "models", "train_cvq.py", output_path])
train_sampler = DistributedSampler(dataset) if num_gpus > 1 else None
print("Data directory: ", data_configs["clean_dir_path"])
print("No. training data: ", len(dataset))
print("Augment start epoch: ", augment_start_epoch)
# collate_fn = AudioNoiseCollateFn(max_batch_len=max_batch_len,
# load_noisy=train_clean)
collate_fn = AudioAugmentCollateFn(augmentation=train_clean)
dataloader = DataLoader(dataset=dataset,
sampler=train_sampler,
batch_size=batch_size // num_gpus,
collate_fn=collate_fn,
num_workers=8,
pin_memory=True,
drop_last=True,
shuffle=True if train_sampler is None else False)
# ===== Initialize model ======
model = getattr(models, model_name)(**model_configs)
if checkpoint_path != "":
print("Loading model weight from checkpoint ", checkpoint_path)
model.copy_state_dict(checkpoint_dict["state_dict"])
model = model.cuda()
# =====START: ADDED FOR DISTRIBUTED======
if num_gpus > 1:
model = apply_gradient_allreduce(model)
# =====END: ADDED FOR DISTRIBUTED======
optimizer = Adam(model.parameters(), lr=lr, weight_decay=1e-5)
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer,
max_lr=lr,
div_factor=4,
final_div_factor=10,
steps_per_epoch=len(dataloader),
epochs=train_epoch,
pct_start=0.1)
start_epoch = 0
if checkpoint_path != "" and continue_from_cpt:
optimizer.load_state_dict(checkpoint_dict["optimizer"])
scheduler.load_state_dict(checkpoint_dict["scheduler"])
start_epoch = checkpoint_dict["epoch"]
print("Start epoch: ", start_epoch)
print("Learning rate: ", scheduler.get_last_lr())
logger = None
validator = None
if rank == 0:
logger = DataLogger(logdir=join(output_path, "logs"))
validator = Validator(logger=logger, start_iteration=start_iteration,
pretrain=pretrain, **validation_configs)
# =====START: ADDED FOR AMP ======
if use_fp16:
scaler = torch.cuda.amp.GradScaler()
else:
scaler = None
# =====END: ADDED FOR AMP ======
iteration = start_iteration
for epoch in range(start_epoch, train_epoch):
try:
model.train()
if train_sampler is not None:
train_sampler.set_epoch(epoch)
if rank == 0:
widgets = [FormatLabel(''), Bar('#'), ' ', Percentage(format='%(percentage).1f%%'),
" (", Counter(), "|%d) " % len(dataloader), " ", Timer(), " ", ETA()]
iterator = progressbar(dataloader, redirect_stdout=True, widgets=widgets)
else:
iterator = dataloader
for batch in iterator:
model.zero_grad()
optimizer.zero_grad()
if epoch > augment_start_epoch:
augment = True
else:
augment = False
if use_fp16:
with torch.cuda.amp.autocast(enabled=True):
if train_clean:
x_clean = batch[0].cuda()
x_noise = batch[1].cuda()
loss_components = model([x_clean, x_noise], train_clean=False)
else:
loss_components = model([batch.cuda()], augment=augment)
loss = loss_components["loss"]
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
if train_clean:
x_clean = batch[0].cuda()
x_noise = batch[1].cuda()
loss_components = model([x_clean, x_noise], train_clean=False)
else:
loss_components = model([batch.cuda()], train_clean=True, augment=augment)
loss = loss_components["loss"]
loss.backward()
optimizer.step()
scheduler.step()
if num_gpus > 1:
for i in loss_components.keys():
loss_components[i] = reduce_tensor(loss_components[i].data, num_gpus).item()
else:
for i in loss_components.keys():
loss_components[i] = loss_components[i].item()
if rank == 0:
widgets[0] = FormatLabel("{:d}|{:d}: ".format(epoch, iteration) +
' '.join(
'{}={:.2e}'.format(k, loss_components[k]) for k in loss_components.keys()))
if logger is not None:
loss_tags = list(loss_components.keys())
logger.log_training([loss_components[i] for i in loss_tags],
loss_tags, iteration)
if (iteration % iters_per_eval) == 0:
validator(model, iteration)
checkpoint_dict = {
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"lr": lr,
"iteration": iteration,
"epoch": epoch
}
torch.save(checkpoint_dict, join(output_path, "checkpoint_latest.pt"))
if (iteration % iters_per_checkpoint) == 0 and iteration > 0:
torch.save(checkpoint_dict, join(output_path, "checkpoint_%d.pt" % iteration))
iteration += 1
if rank == 0:
print(scheduler.get_last_lr())
except KeyboardInterrupt:
if rank == 0:
checkpoint_dict = {
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"lr": lr,
"iteration": iteration,
"epoch": epoch
}
torch.save(checkpoint_dict, join(output_path, "checkpoint_%d.pt" % iteration))
sys.exit(0)
print("Finished!")
class Validator(object):
def __init__(self, logger: DataLogger, test_file, noise_file,
pretrain=True, snr: tuple = None, start_iteration=0):
self.logger = logger
self.snr = snr
self.pretrain = pretrain
self.augmentation = True
if pretrain:
self.augmentation = False
stft = torchaudio.transforms.Spectrogram(n_fft=512, win_length=400, hop_length=100)
sample_rate, audio_clean = wavfile.read(test_file)
print("Eval speech sample rate:", sample_rate)
sample_rate, noise = wavfile.read(noise_file)
print("Eval noise sample rate:", sample_rate)
self.sample_rate = sample_rate
audio_clean = audio_clean / 32768.0
audio_clean = audio_clean - np.mean(audio_clean)
# audio_clean, _, _ = AudioAugmentDataset.scale_db(audio_clean, -25)
self.audio_clean = audio_clean
if self.augmentation:
noise = noise / (max(abs(noise)) + 1)
if len(noise) < len(audio_clean):
noise = np.pad(noise, (0, len(audio_clean) - len(noise)), mode='wrap')
else:
noise = noise[:len(audio_clean)]
clean_db = 10 * np.log10(np.mean(audio_clean ** 2) + 1e-9)
noise_db = 10 * np.log10(np.mean(noise ** 2) + 1e-9)
self.audio_input = []
for _snr in self.snr:
noise_scale = np.sqrt(10 ** ((clean_db - noise_db - _snr) / 10)) * noise
audio_noise = torch.from_numpy(noise_scale + audio_clean).float()
self.audio_input.append(audio_noise.cuda().unsqueeze(0))
s_mix = stft(audio_noise).squeeze().numpy()
# print(np.max(s_mix))
s_mix_fig = plt.figure(dpi=150, figsize=(9, 3))
plt.imshow(0.5 * np.log10(s_mix + 1e-12), aspect='auto', origin='lower')
plt.colorbar()
self.logger.add_figure("Spectrogram/Noisy_%d_dB" % _snr, s_mix_fig, start_iteration)
plt.close()
self.logger.add_audio("Audio/Noisy_%d_dB" % _snr,
(audio_noise/torch.max(torch.abs(audio_noise))).numpy(),
start_iteration,
sample_rate=16000)
self.audio_input = torch.cat(self.audio_input, dim=0)
else:
self.audio_input = torch.from_numpy(audio_clean).float().unsqueeze(0).cuda()
# Plot audio clean spectrogram to Tensorboard
s_clean = stft(torch.from_numpy(audio_clean).float().unsqueeze(0)).squeeze().numpy()
s_clean_fig = plt.figure(dpi=150, figsize=(9, 3))
plt.imshow(0.5*np.log10(s_clean + 1e-9), aspect='auto', origin='lower')
plt.colorbar()
self.logger.add_figure("Spectrogram/Clean", s_clean_fig, start_iteration)
self.logger.add_audio("Audio/Clean", audio_clean, start_iteration, sample_rate=16000)
def __call__(self, model, iteration):
model.eval()
with torch.no_grad():
if self.pretrain:
log_var_speech = model.inference(self.audio_input, pretrain=True)
log_var_speech = log_var_speech.squeeze().detach().cpu().numpy()
log_var_speech_fig = plt.figure(dpi=150, figsize=(9, 3))
plt.imshow(log_var_speech, aspect='auto', origin='lower')
plt.colorbar()
self.logger.add_figure("Speech_log_var",
log_var_speech_fig,
iteration)
plt.close()
else:
# x_enhanced, s_noise, s_enhance = model.inference(self.audio_input, self.pretrain)
# x_enhanced = (x_enhanced / (torch.max(torch.abs(x_enhanced)))).cpu().numpy()
# s_enhance = s_enhance.detach().cpu().numpy()
# pesq_dict = {}
# for i, _snr in enumerate(self.snr):
# pesq_dict[str(_snr) + "dB"] = pesq(16000,
# self.audio_clean[:x_enhanced[i].shape[-1]],
# x_enhanced[i],
# "nb")
# self.logger.add_audio("Audio/Enhanced_%d_dB" % _snr,
# x_enhanced[i],
# iteration,
# sample_rate=self.sample_rate)
# s_enhance_fig = plt.figure(dpi=150, figsize=(9, 3))
# plt.imshow(0.5*np.log10(s_enhance[i] + 1e-9), aspect='auto', origin='lower')
# plt.colorbar()
# self.logger.add_figure("Spectrogram/Enhanced_%d_dB" % _snr,
# s_enhance_fig,
# iteration)
# plt.close()
# print(pesq_dict)
# self.logger.add_scalars("PESQ", pesq_dict, iteration)
# audio_clean = torch.from_numpy(self.audio_clean).float().unsqueeze(0).cuda()
# audio_clean = audio_clean.repeat(self.audio_input.shape[0], 1)
x_enhance, s_enhance, log_var_speech, log_var_noise = model.inference(self.audio_input,
pretrain=False)
x_enhance = (x_enhance / (torch.max(torch.abs(x_enhance)))).cpu().numpy()
s_enhance = s_enhance.detach().cpu().numpy()
log_var_noise = log_var_noise.detach().cpu().numpy()
log_var_speech = log_var_speech.detach().cpu().numpy()
pesq_dict = {}
for i, _snr in enumerate(self.snr):
self.logger.add_audio("Audio/Enhanced_%d_dB" % _snr,
x_enhance[i],
iteration,
sample_rate=self.sample_rate)
pesq_dict[str(_snr) + "dB"] = pesq(16000,
self.audio_clean[:x_enhance[i].shape[-1]],
x_enhance[i],
"nb")
s_enhance_fig = plt.figure(dpi=150, figsize=(9, 3))
plt.imshow(0.5*np.log10(s_enhance[i] + 1e-9), aspect='auto', origin='lower')
plt.colorbar()
self.logger.add_figure("Spectrogram/Enhanced_%d_dB" % _snr,
s_enhance_fig,
iteration)
plt.close()
log_var_speech_fig = plt.figure(dpi=150, figsize=(9, 3))
plt.imshow(log_var_speech[i], aspect='auto', origin='lower')
plt.colorbar()
self.logger.add_figure("Speech_log_var/%d_dB" % _snr,
log_var_speech_fig,
iteration)
plt.close()
log_var_noise_fig = plt.figure(dpi=150, figsize=(9, 3))
plt.imshow(log_var_noise[i], aspect='auto', origin='lower')
plt.colorbar()
self.logger.add_figure("Noise_log_var/%d_dB" % _snr,
log_var_noise_fig,
iteration)
plt.close()
print(pesq_dict)
self.logger.add_scalars("PESQ", pesq_dict, iteration)
model.train()
# Example:
# python train.py --config=cfg/train_config_cvq.json
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--rank', type=int, default=0,
help='rank of process for distributed')
parser.add_argument('-g', '--group_name', type=str, default='',
help='name of group for distributed')
parser.add_argument('-c', '--config', type=str, required=True,
help='JSON file for configuration')
global args
args = parser.parse_args()
num_gpus = torch.cuda.device_count()
with open(args.config) as f:
config = json.load(f)
training_configs = config["training_configs"]
global dist_configs
dist_configs = config["dist_configs"]
global model_configs
model_configs = config["model_configs"]
global validation_configs
validation_configs = config["validation_configs"]
global data_configs
data_configs = config["data_configs"]
if num_gpus > 1:
if args.group_name == '':
print("Warning: Training on 1 GPU!")
num_gpus = 1
else:
print("Run distributed training on %d GPUs" % num_gpus)
train(num_gpus=num_gpus, rank=args.rank, group_name=args.group_name, **training_configs)