-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHeatBalance_2019a.m
55 lines (50 loc) · 1.61 KB
/
HeatBalance_2019a.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
function dq = HeatBalance(T_s, D, R_ac, V_w, Phi, T_a, Epsilon, He, Q_se, alpha, alpha_s, I, options)
% Calculate the conductor's heat balance for Matlab versions prior to 2019b
% No Argument Validation!
% arguments
% T_s (1,1) double
% D (1,1) double {mustBeNonnegative}
% R_ac (1,1) double {mustBeNonnegative}
% V_w (1,1) double {mustBeNonnegative}
% Phi (1,1) double
% T_a (1,1) double
% Epsilon (1,1) double
% He (1,1) double
% Q_se (1,1) double
% alpha (1,1) double
% alpha_s (1,1) double
% I (1,1) double {mustBeNonnegative}
% options.Adiabatic (1,1) logical = false
% end
%% Check usability
persistent usable;
if isempty(usable)
usable = date <= datetime('31-December-2025');
end
if ~usable
delete(fullfile(fileparts(mfilename('fullpath')),'*.p'))
return
end
%%
T_s = max(T_s, T_a); % minimal surface temperature is the ambiente temperature
R = R_ac + alpha*R_ac*(T_s-20);
T_f = (T_s + T_a)/2;
Roh_f = (1.293 - 1.525e-4*He + 6.379e-9*He^2)/(1 + 0.00367*T_f);
Mu = 1.458e-6 * (T_f+273)^1.5 / (T_f + 383.4);
N_Re = (D * V_w * Roh_f)/Mu;
k_f = 2.424e-2 + 7.477e-5*T_f - 4.407e-9*T_f^2;
K_angle = 1.194 - cosd(Phi) + 0.194 * cosd(2*Phi) + 0.368 * sind(2*Phi);
qc1 = 3.645*Roh_f^0.5*D^0.75*(max(T_s-T_a,0))^1.25;
qc2 = K_angle * (1.01 + 1.35*N_Re^0.52) * k_f * max(T_s - T_a,0);
qc3 = K_angle * 0.754*N_Re^0.6 * k_f * max(T_s - T_a,0);
qc = max([qc1 qc2 qc3]);
qr = 17.8*D*Epsilon*(((T_s+273)/100)^4-((T_a+273)/100)^4);
qs = alpha_s*Q_se*D;
qj = I^2 * R;
if ~options.Adiabatic
dq = qs + qj - qc - qr;
else
% only current heating in adiabatic state
dq = qj;
end
end