-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
216 lines (174 loc) · 7.04 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch
import os
import shutil
import argparse
from tqdm import tqdm
import time
from collections import defaultdict
import pandas as pd
from src import config
from src.checkpoints import CheckpointIO
from src.utils.io import export_pointcloud
from src.utils.visualize import visualize_data
from src.utils.voxels import VoxelGrid
parser = argparse.ArgumentParser(
description='Extract meshes from occupancy process.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
args = parser.parse_args()
cfg = config.load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
out_dir = cfg['training']['out_dir']
generation_dir = os.path.join(out_dir, cfg['generation']['generation_dir'])
out_time_file = os.path.join(generation_dir, 'time_generation_full.pkl')
out_time_file_class = os.path.join(generation_dir, 'time_generation.pkl')
input_type = cfg['data']['input_type']
vis_n_outputs = cfg['generation']['vis_n_outputs']
if vis_n_outputs is None:
vis_n_outputs = -1
# Dataset
dataset = config.get_dataset('test', cfg, return_idx=True)
# Model
model = config.get_model(cfg, device=device, dataset=dataset)
checkpoint_io = CheckpointIO(out_dir, model=model)
checkpoint_io.load(cfg['test']['model_file'])
# Generator
generator = config.get_generator(model, cfg, device=device)
# Determine what to generate
generate_mesh = cfg['generation']['generate_mesh']
generate_pointcloud = cfg['generation']['generate_pointcloud']
if generate_mesh and not hasattr(generator, 'generate_mesh'):
generate_mesh = False
print('Warning: generator does not support mesh generation.')
if generate_pointcloud and not hasattr(generator, 'generate_pointcloud'):
generate_pointcloud = False
print('Warning: generator does not support pointcloud generation.')
# Loader
test_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, num_workers=0, shuffle=False)
# Statistics
time_dicts = []
# Generate
model.eval()
# Count how many models already created
model_counter = defaultdict(int)
for it, data in enumerate(tqdm(test_loader)):
# Output folders
mesh_dir = os.path.join(generation_dir, 'meshes')
pointcloud_dir = os.path.join(generation_dir, 'pointcloud')
in_dir = os.path.join(generation_dir, 'input')
generation_vis_dir = os.path.join(generation_dir, 'vis')
# Get index etc.
idx = data['idx'].item()
try:
model_dict = dataset.get_model_dict(idx)
except AttributeError:
model_dict = {'model': str(idx), 'category': 'n/a'}
modelname = model_dict['model']
category_id = model_dict.get('category', 'n/a')
try:
category_name = dataset.metadata[category_id].get('name', 'n/a')
except AttributeError:
category_name = 'n/a'
if category_id != 'n/a':
mesh_dir = os.path.join(mesh_dir, str(category_id))
pointcloud_dir = os.path.join(pointcloud_dir, str(category_id))
in_dir = os.path.join(in_dir, str(category_id))
folder_name = str(category_id)
if category_name != 'n/a':
folder_name = str(folder_name) + '_' + category_name.split(',')[0]
generation_vis_dir = os.path.join(generation_vis_dir, folder_name)
# Create directories if necessary
if vis_n_outputs >= 0 and not os.path.exists(generation_vis_dir):
os.makedirs(generation_vis_dir)
if generate_mesh and not os.path.exists(mesh_dir):
os.makedirs(mesh_dir)
if generate_pointcloud and not os.path.exists(pointcloud_dir):
os.makedirs(pointcloud_dir)
if not os.path.exists(in_dir):
os.makedirs(in_dir)
# Timing dict
time_dict = {
'idx': idx,
'class id': category_id,
'class name': category_name,
'modelname': modelname,
}
time_dicts.append(time_dict)
# Generate outputs
out_file_dict = {}
# Also copy ground truth
if cfg['generation']['copy_groundtruth']:
modelpath = os.path.join(
dataset.dataset_folder, category_id, modelname,
cfg['data']['watertight_file'])
out_file_dict['gt'] = modelpath
if generate_mesh:
t0 = time.time()
if cfg['generation']['sliding_window']:
if it == 0:
print('Process scenes in a sliding-window manner')
out = generator.generate_mesh_sliding(data)
else:
out = generator.generate_mesh(data)
time_dict['mesh'] = time.time() - t0
# Get statistics
try:
mesh, stats_dict = out
except TypeError:
mesh, stats_dict = out, {}
time_dict.update(stats_dict)
# Write output
mesh_out_file = os.path.join(mesh_dir, '%s.off' % modelname)
mesh.export(mesh_out_file)
out_file_dict['mesh'] = mesh_out_file
if generate_pointcloud:
t0 = time.time()
pointcloud = generator.generate_pointcloud(data)
time_dict['pcl'] = time.time() - t0
pointcloud_out_file = os.path.join(
pointcloud_dir, '%s.ply' % modelname)
export_pointcloud(pointcloud, pointcloud_out_file)
out_file_dict['pointcloud'] = pointcloud_out_file
if cfg['generation']['copy_input']:
# Save inputs
if input_type == 'voxels':
inputs_path = os.path.join(in_dir, '%s.off' % modelname)
inputs = data['inputs'].squeeze(0).cpu()
voxel_mesh = VoxelGrid(inputs).to_mesh()
voxel_mesh.export(inputs_path)
out_file_dict['in'] = inputs_path
elif input_type == 'pointcloud_crop':
inputs_path = os.path.join(in_dir, '%s.ply' % modelname)
inputs = data['inputs'].squeeze(0).cpu().numpy()
export_pointcloud(inputs, inputs_path, False)
out_file_dict['in'] = inputs_path
elif input_type == 'pointcloud' or 'partial_pointcloud':
inputs_path = os.path.join(in_dir, '%s.ply' % modelname)
inputs = data['inputs'].squeeze(0).cpu().numpy()
export_pointcloud(inputs, inputs_path, False)
out_file_dict['in'] = inputs_path
# Copy to visualization directory for first vis_n_output samples
c_it = model_counter[category_id]
if c_it < vis_n_outputs:
# Save output files
img_name = '%02d.off' % c_it
for k, filepath in out_file_dict.items():
ext = os.path.splitext(filepath)[1]
out_file = os.path.join(generation_vis_dir, '%02d_%s%s'
% (c_it, k, ext))
shutil.copyfile(filepath, out_file)
model_counter[category_id] += 1
# Create pandas dataframe and save
time_df = pd.DataFrame(time_dicts)
time_df.set_index(['idx'], inplace=True)
time_df.to_pickle(out_time_file)
# Create pickle files with main statistics
time_df_class = time_df.groupby(by=['class name']).mean()
time_df_class.to_pickle(out_time_file_class)
# Print results
time_df_class.loc['mean'] = time_df_class.mean()
print('Timings [s]:')
print(time_df_class)