forked from WHOIGit/ifcb_classifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuston_data.py
470 lines (392 loc) · 20.4 KB
/
neuston_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
"""this module handles the parsing of data directories"""
# built in imports
import os, sys
import random
# 3rd party imports
from torchvision import transforms, datasets
from torch.utils.data.dataset import Dataset, IterableDataset
from torch import Tensor
import pandas as pd
# project imports
import ifcb
from ifcb.data.adc import SCHEMA_VERSION_1
from ifcb.data.stitching import InfilledImages
## TRAINING ##
class NeustonDataset(Dataset):
def __init__(self, src, minimum_images_per_class=1, maximum_images_per_class=None, transforms=None, images_perclass=None):
self.src = src
if not images_perclass:
images_perclass = self.fetch_images_perclass(src)
# CLASS MINIMUM CUTTOFF
self.minimum_images_per_class = max(1, minimum_images_per_class) # always at least 1.
images_perclass__minthresh = {label: images for label, images in images_perclass.items() if
len(images) >= self.minimum_images_per_class}
classes_ignored = sorted(set(images_perclass.keys())-set(images_perclass__minthresh.keys()))
self.classes_ignored_from_too_few_samples = [(c, len(images_perclass[c])) for c in classes_ignored]
self.classes = sorted(images_perclass__minthresh.keys())
# CLASS MAXIMUM LIMITING
self.maximum_images_per_class = maximum_images_per_class
if maximum_images_per_class:
assert maximum_images_per_class > self.minimum_images_per_class
images_perclass__maxlimited = {label: sorted(random.sample(images,maximum_images_per_class)) if maximum_images_per_class<len(images) else images for label,images in images_perclass__minthresh.items()}
images_perclass__final = images_perclass__maxlimited
self.classes_limited_from_too_many_samples = [c for c in self.classes if len(images_perclass__maxlimited[c]) < len(images_perclass__minthresh[c])]
else:
images_perclass__final = images_perclass__minthresh
self.classes_limited_from_too_many_samples = None
# sort perclass images internally, just because its nice.
images_perclass__final = {label:sorted(images) for label, images in images_perclass__final.items()}
# flatten images_perclass to congruous list of image paths and target id's
self.targets, self.images = zip(*((self.classes.index(t), i) for t in images_perclass__final for i in images_perclass__final[t]))
self.transforms = transforms
@classmethod
def fetch_images_perclass(cls, src, include_exclude_rename=None):
""" folders in src are the classes """
# TODO implement SRC as a config file that can combine classes from multiple datasets.
# datasets may have different priority levels (relevant for class-max option that happens outside of this function)
# classic behavior
if os.path.isdir(src) and include_exclude_rename is None:
classes = [d.name for d in os.scandir(src) if d.is_dir()]
classes.sort()
images_perclass = {}
for subdir in classes:
files = os.listdir(os.path.join(src, subdir))
#files = sorted([i for i in files if i.lower().endswith(ext)])
files = sorted([f for f in files if os.path.splitext(f)[1] in datasets.folder.IMG_EXTENSIONS])
images_perclass[subdir] = [os.path.join(src, subdir, i) for i in files]
return images_perclass
# classes are being adjusted on a per-dataset level
elif os.path.isdir(src) and include_exclude_rename is not None:
images_perclass = cls.fetch_images_perclass(src)
#TODO perform include_exclude_rename
# eg: [('Akashiwo', 1), ('Bacillaria', 0), ('Bidulphia', 'BIDOUF'), ('Cochlodinium', 'BIDOUF'), ('Didinium_sp', '1')]
for key,mode in include_exclude_rename:
if mode==1 or mode=='1': pass
elif (mode==0 or mode=='0') and key in images_perclass:
del images_perclass[key]
else: # RENAME
if key not in images_perclass: continue
new_key = mode
if new_key in images_perclass:
images_perclass[new_key].extend(images_perclass[key])
else: images_perclass[new_key] = images_perclass[key]
del images_perclass[key]
return images_perclass
else: #elif os.path.isfile(src): # src is a dataset config/combine file.
df = pd.read_csv(src, header=0, index_col=0)
cols = df.columns.to_list()
datasets_by_priority = []
lowest_priority = float('inf')
for i in range(len(cols)):
col = cols[i].split(':',1)
if len(col)==2:
priority=int(col[0])
dataset = col[1]
else:
dataset=col[0]
priority=0
if lowest_priority > priority:
lowest_priority = priority
include_exclude_rename__PARAM = zip(df.index,df[cols[i]].to_list())
dataset_images_perclass = cls.fetch_images_perclass(dataset, include_exclude_rename=include_exclude_rename__PARAM)
datasets_by_priority.append((priority,dataset,dataset_images_perclass))
# assigning non-prioritized datasets to the max+1 priority (last)
priorities = [p for p,d,i in datasets_by_priority]
priorities = set([max(priorities)+1 if p==0 else p for p in priorities])
datasets_by_priority = (( (max(priorities) if p==0 else p) ,d,i) for p,d,i in datasets_by_priority)
images_perclass = dict()
def extend_dol(d1,d2):
"""d1 and d2 are dicts who's items must all be lists. d1 is modified by d2 such that d2's lists extend d1's corresponding lists."""
for key in d2:
if key in d1:
d1[key].extend(d2[key])
else:
d1[key] = d2[key]
for priority_level in sorted(priorities):
priority_images_perclass = dict()
for p,ds,ipc in datasets_by_priority:
if p == priority_level: # same priority
extend_dol(priority_images_perclass,ipc) # TODO update clobbers previous lists. this is no bueno. we want to EXTEND any existing values
for key in priority_images_perclass:
random.shuffle(priority_images_perclass[key])
extend_dol(images_perclass,priority_images_perclass) # TODO update clobbers previous lists. this is no bueno. we want to EXTEND any existing values
# TODO read src/config file.
# (1) DONE! run cls.fetch_images(dataset, configuration) for each dataset
# (2) DONE! on a dataset priority basis, randomize image orders (make sure random seed is known?)
# (3) DONE! Then concat all perclass dataset images (still in priority order basis)
# TODO: test this mess :)
return images_perclass
@property
def images_perclass(self):
ipc = {c: [] for c in self.classes}
for img, trg in zip(self.images, self.targets):
ipc[self.classes[trg]].append(img)
return ipc
@property
def count_perclass(self):
cpc = [0 for c in self.classes] # initialize list at 0-counts
for class_idx in self.targets:
cpc[class_idx] += 1
return cpc
def split(self, ratio1, ratio2, seed=None, minimum_images_per_class='scale'):
assert ratio1+ratio2 == 100, 'ratio1:ratio2 must sum to 100, instead got {}:{} (total: {})'.format(ratio1,ratio2,ratio1+ratio2)
d1_perclass = {}
d2_perclass = {}
for class_label, images in self.images_perclass.items():
#1) determine output lengths
d1_len = int(ratio1*len(images)/100+0.5)
if d1_len == len(images) and self.minimum_images_per_class>1:
# make sure that at least one image gets put in d2
d1_len -= 1
#2) split images as per distribution
if seed:
random.seed(seed)
d1_images = random.sample(images, d1_len)
d2_images = sorted(list(set(images)-set(d1_images)))
assert len(d1_images)+len(d2_images) == len(images)
#3) put images into perclass_sets at the right class
d1_perclass[class_label] = d1_images
d2_perclass[class_label] = d2_images
#4) create and return new datasets
dataset1 = NeustonDataset(src=self.src, images_perclass=d1_perclass, transforms=self.transforms)
dataset2 = NeustonDataset(src=self.src, images_perclass=d2_perclass, transforms=self.transforms)
assert dataset1.classes == dataset2.classes, 'd1-d2_classes:{}, d2-d1_classes:{}'.format(set(dataset1.classes)-set(dataset2.classes), set(dataset2.classes)-set(dataset1.classes)) # possibly fails due to edge case thresholding?
assert len(dataset1)+len(dataset2) == len(self), 'd1_len:{}, d2_len:{}'.format(len(dataset1),len(dataset2)) # make sure we don't lose any images somewhere
return dataset1, dataset2
@classmethod
def from_csv(cls, src, csv_file, column_to_run, transforms=None, minimum_images_per_class=1, maximum_images_per_class=None):
#1) load csv
df = pd.read_csv(csv_file, header=0)
base_list = df.iloc[:,0].tolist() # first column
mod_list = df[column_to_run].tolist() # chosen column
#2) get list of files
default_images_perclass = cls.fetch_images_perclass(src)
missing_classes_src = [c for c in default_images_perclass if c not in base_list]
#3) for classes in column to run, keep 1's, dump 0's, combine named
new_images_perclass = {}
missing_classes_csv = []
skipped_classes = []
grouped_classes = {}
for base, mod in zip(base_list, mod_list):
if base not in default_images_perclass:
missing_classes_csv.append(base)
continue
if str(mod) == '0': # don't include this class
skipped_classes.append(base)
continue
elif str(mod) == '1':
class_label = base # include this class
else:
class_label = mod # rename/group base class as mod
if mod not in grouped_classes:
grouped_classes[mod] = [base]
else:
grouped_classes[mod].append(base)
# transcribing images
if class_label not in new_images_perclass:
new_images_perclass[class_label] = default_images_perclass[base]
else:
new_images_perclass[class_label].extend(default_images_perclass[base])
#4) print messages
if missing_classes_src:
msg = '\n{} of {} classes from src dir {} were NOT FOUND in {}'
msg = msg.format(len(missing_classes_src), len(default_images_perclass.keys()), src,
os.path.basename(csv_file))
print('\n '.join([msg]+missing_classes_src))
if missing_classes_csv:
msg = '\n{} of {} classes from {} were NOT FOUND in src dir {}'
msg = msg.format(len(missing_classes_csv), len(base_list), os.path.basename(csv_file), src)
print('\n '.join([msg]+missing_classes_csv))
if grouped_classes:
msg = '\n{} GROUPED classes were created, as per {}'
msg = msg.format(len(grouped_classes), os.path.basename(csv_file))
print(msg)
for mod, base_entries in grouped_classes.items():
print(' {}'.format(mod))
msgs = ' <-- {}'
msgs = [msgs.format(c) for c in base_entries]
print('\n'.join(msgs))
if skipped_classes:
msg = '\n{} classes were SKIPPED, as per {}'
msg = msg.format(len(skipped_classes), os.path.basename(csv_file))
print('\n '.join([msg]+skipped_classes))
#5) create dataset
return cls(src=src, images_perclass=new_images_perclass, transforms=transforms,
minimum_images_per_class=minimum_images_per_class,
maximum_images_per_class=maximum_images_per_class)
def __getitem__(self, index):
path = self.images[index]
target = self.targets[index]
data = datasets.folder.default_loader(path)
if self.transforms is not None:
data = self.transforms(data)
return data, target, path
def __len__(self):
return len(self.images)
@property
def imgs(self):
return self.images
class ImageFolderWithPaths(datasets.ImageFolder):
"""
Custom dataset that includes image file paths. Extends torchvision.datasets.ImageFolder
Example setup: dataloader = torch.utils.DataLoader(ImageFolderWithPaths("path/to/your/perclass/image/folders"))
Example usage: for inputs,labels,paths in my_dataloader: ....
instead of: for inputs,labels in my_dataloader: ....
adapted from: https://gist.github.com/andrewjong/6b02ff237533b3b2c554701fb53d5c4d
"""
# override the __getitem__ method. this is the method dataloader calls
def __getitem__(self, index):
# this is what ImageFolder normally returns
data, target = super(ImageFolderWithPaths, self).__getitem__(index)
# the image file path
path = self.imgs[index][0]
# return a new tuple that includes original plus the path
return data, target, path
def get_trainval_datasets(args):
## initializing data ##
print('Initializing Data...')
if not args.class_config:
nd = NeustonDataset(src=args.SRC, minimum_images_per_class=args.class_min, maximum_images_per_class=args.class_max)
else:
nd = NeustonDataset.from_csv(src=args.SRC, csv_file=args.class_config[0], column_to_run=args.class_config[1],
minimum_images_per_class=args.class_min, maximum_images_per_class=args.class_max)
# TODO record to args which classes were grouped, skipped, and limited.
ratio1, ratio2 = map(int, args.split.split(':'))
dataset_tup = nd.split(ratio1, ratio2, seed=args.seed)
if not args.swap:
training_dataset, validation_dataset = dataset_tup
else:
validation_dataset, training_dataset = dataset_tup
ci_nd = nd.classes_ignored_from_too_few_samples
ci_train = training_dataset.classes_ignored_from_too_few_samples
ci_eval = validation_dataset.classes_ignored_from_too_few_samples
assert ci_eval == ci_train
if ci_nd:
msg = '\n{} out of {} classes ignored from --class-minimum {}, PRE-SPLIT'
msg = msg.format(len(ci_nd), len(nd.classes+ci_nd), args.class_min)
ci_nd = ['({:2}) {}'.format(l, c) for c, l in ci_nd]
print('\n '.join([msg]+ci_nd))
if ci_eval:
msg = '\n{} out of {} classes ignored from --class-minimum {}, POST-SPLIT'
msg = msg.format(len(ci_eval), len(validation_dataset.classes+ci_eval), args.class_min)
ci_eval = ['({:2}) {}'.format(l, c) for c, l in ci_eval]
print('\n '.join([msg]+ci_eval))
# applying transforms
train_tforms, val_tforms = get_trainval_transforms(args)
training_dataset.transforms = train_tforms
validation_dataset.transforms = val_tforms
return training_dataset, validation_dataset
def parse_imgnorm(img_norm_arg):
mean = img_norm_arg[0]
mean = [float(m) for m in mean.split(',')]
if len(mean) == 1: mean = 3*mean
std = img_norm_arg[1]
std = [float(s) for s in std.split(',')]
if len(std) == 1: std = 3*std
assert len(mean) == len(std) == 3, '--img-norm invalid: {}'.format(img_norm_arg)
return mean,std
## transforms and augmentation ##
def get_trainval_transforms(args):
# Transforms #
args.resize = 299 if args.MODEL == 'inception_v3' else 224
tform_resize = transforms.Resize([args.resize,args.resize])
base_tforms = [tform_resize, transforms.ToTensor()]
if args.img_norm:
mean,std = parse_imgnorm(args.img_norm)
tform_img_norm = transforms.Normalize(mean,std)
base_tforms.append(tform_img_norm)
# images from bins are already PIL_images, so no need to include ToPILImage()
aug_tforms_training = []
aug_tforms_validation = []
if args.flip:
flip_tforms = []
# args.flip choices=[x y xy x+V y+V xy+V]
if 'x' in args.flip:
flip_tforms.append(transforms.RandomVerticalFlip(p=0.5))
if 'y' in args.flip:
flip_tforms.append(transforms.RandomHorizontalFlip(p=0.5))
aug_tforms_training.extend(flip_tforms)
if '+V' in args.flip: aug_tforms_validation.extend(flip_tforms)
# TODO add other augments here
train_tforms = transforms.Compose( aug_tforms_training + base_tforms )
val_tforms = transforms.Compose( aug_tforms_validation + base_tforms )
return train_tforms, val_tforms
## RUNNING ##
class ImageDataset(Dataset):
"""
Custom dataset that includes image file paths. Extends torchvision.datasets.ImageFolder
Example setup: dataloader = torch.utils.DataLoader(ImageFolderWithPaths("path/to/your/perclass/image/folders"))
Example usage: for inputs,labels,paths in my_dataloader: ....
instead of: for inputs,labels in my_dataloader: ....
adapted from: https://gist.github.com/andrewjong/6b02ff237533b3b2c554701fb53d5c4d
"""
def __init__(self, image_paths, resize=244, input_src=None):
self.input_src = input_src
self.image_paths = [img for img in image_paths if img.endswith(datasets.folder.IMG_EXTENSIONS)]
# use 299x299 for inception_v3, all other models use 244x244
self.transform = transforms.Compose([transforms.Resize([resize, resize]),
transforms.ToTensor()])
if len(self.image_paths) < len(image_paths):
print('{} non-image files were ommited'.format(len(image_paths)-len(self.image_paths)))
if len(self.image_paths) == 0:
raise RuntimeError('No images Loaded!!')
def __getitem__(self, index):
path = self.image_paths[index]
image = datasets.folder.default_loader(path)
if self.transform is not None:
image = self.transform(image)
return image, path
def __len__(self):
return len(self.image_paths)
# untested
class IfcbImageDataset(IterableDataset):
def __init__(self, data_path, resize):
self.dd = ifcb.DataDirectory(data_path)
# use 299x299 for inception_v3, all other models use 244x244
if isinstance(resize, int):
resize = (resize, resize)
self.resize = resize
def __iter__(self):
for bin in self.dd:
print(bin)
for target_number, img in bin.images.items():
target_pid = bin.pid.with_target(target_number)
img = Tensor([img]*3)
img = transforms.Resize(self.resize)(transforms.ToPILImage()(img))
img = transforms.ToTensor()(img)
yield img, target_pid
def __len__(self):
"""warning: for large datasets, this is very very slow"""
return sum(len(bin) for bin in self.dd)
class IfcbBinDataset(Dataset):
def __init__(self, bin, resize, img_norm=None):
self.bin = bin
self.images = []
self.pids = []
self.img_norm = parse_imgnorm(img_norm) if img_norm else None
# use 299x299 for inception_v3, all other models use 244x244
if isinstance(resize, int):
resize = (resize, resize)
self.resize = resize
# old-style bins need to be stitched and infilled
if bin.schema == SCHEMA_VERSION_1:
bin_images = InfilledImages(bin)
else:
bin_images = bin.images
for target_number, img in bin_images.items():
target_pid = bin.pid.with_target(target_number)
self.images.append(img)
self.pids.append(target_pid)
def __getitem__(self, item):
img = self.images[item]
img = transforms.ToPILImage(mode='L')(img)
img = img.convert('RGB')
img = transforms.Resize(self.resize)(img)
img = transforms.ToTensor()(img)
if self.img_norm:
img = transforms.Normalize(*self.img_norm)(img)
return img, self.pids[item]
def __len__(self):
return len(self.pids)
def get_run_dataset():
pass