forked from WHOIGit/ifcb_classifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuston_callbacks.py
296 lines (246 loc) · 15 KB
/
neuston_callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
"""this module handles the logging of data from epochs"""
# built in imports
import json
import os
# 3rd party imports
import h5py as h5
import numpy as np
import pytorch_lightning as ptl
from scipy.io import savemat
from sklearn import metrics
# project imports
import ifcb
from neuston_data import IfcbBinDataset
## Training ##
class SaveValidationResults(ptl.callbacks.base.Callback):
def __init__(self, outdir, outfile, series, best_only=True):
self.outdir = outdir
self.outfile = outfile
self.series = series
self.best_only = best_only
def on_validation_end(self, trainer, pl_module):
log = trainer.callback_metrics # flattened dict
#log: val_loss input_classes output_classes input_srcs outputs epoch best train_loss f1_macro f1_weighted
if not(log['best'] or not self.best_only):
return
curr_epoch = pl_module.current_epoch
class_labels = pl_module.hparams.classes
class_idxs = list(range(len(class_labels)))
val_dataset = pl_module.val_dataloader().dataset
train_dataset = pl_module.train_dataloader().dataset
val_counts_perclass = val_dataset.count_perclass
train_counts_perclass = train_dataset.count_perclass
counts_perclass = [vcount+tcount for vcount,tcount in zip(val_counts_perclass, train_counts_perclass)] # element-wise addition
training_image_fullpaths = train_dataset.images
training_image_basenames = [os.path.splitext(os.path.basename(img))[0] for img in training_image_fullpaths]
training_classes = train_dataset.targets
output_scores = log['outputs']
output_winscores = np.max(output_scores, axis=1)
output_classes = np.argmax(output_scores, axis=1)
input_classes = log['input_classes']
image_fullpaths = log['input_srcs']
image_basenames = [os.path.splitext(os.path.basename(img))[0] for img in image_fullpaths]
assert output_scores.shape[0] == len(input_classes), 'wrong number inputs-to-outputs'
assert output_scores.shape[1] == len(class_labels), 'wrong number of class labels'
# STATS!
stats = dict()
for mode in ['weighted','macro', None]:
for stat in ['f1','recall','precision']:
metric = getattr(metrics,stat+'_score')(input_classes,output_classes,labels=class_idxs,average=mode, zero_division=0)
label = '{}_{}'.format(stat,mode if mode else 'perclass')
stats[label] = metric # f1|recall|precision _ macro|weighted|perclass
# Classes order by some Stat
classes_by = dict()
classes_by['count'] = sorted(class_idxs, key=lambda idx: (counts_perclass[idx]), reverse=True) #higher is better
for stat in ['f1','recall','precision']:
classes_by[stat] = sorted(class_idxs, key=lambda idx: (stats[stat+'_perclass'][idx]), reverse=True)
# Confusion matrix
#confusion_matrix = metrics.confusion_matrix(input_classes,output_classes,labels=classes_by['recall'], normalize=None)
confusion_matrix = metrics.confusion_matrix(input_classes, output_classes, labels=class_idxs, normalize=None)
## PASSING IT DOWN TO OUTPUTS ##
# default values
results = dict(model_id=pl_module.hparams.model_id,
timestamp=pl_module.hparams.cmd_timestamp,
class_labels=class_labels,
input_classes=input_classes,
output_classes=output_classes)
# optional values
if 'image_fullpaths' in self.series: results['image_fullpaths'] = image_fullpaths
if 'image_basenames' in self.series: results['image_basenames'] = image_basenames
if 'training_image_fullpaths' in self.series: results['training_image_fullpaths'] = training_image_fullpaths
if 'training_image_basenames' in self.series: results['training_image_basenames'] = training_image_basenames
if 'training_classes' in self.series: results['training_classes'] = training_classes
if 'output_winscores' in self.series: results['output_winscores'] = output_winscores
if 'output_scores' in self.series: results['output_scores'] = output_scores
if 'confusion_matrix' in self.series :
results['confusion_matrix'] = confusion_matrix
#results['classes_by_recall'] = classes_by['recall'] # no longer included with cm
if 'counts_perclass' in self.series: results['counts_perclass'] = counts_perclass
if 'val_counts_perclass' in self.series: results['val_counts_perclass'] = val_counts_perclass
if 'train_counts_perclass' in self.series: results['val_counts_perclass'] = val_counts_perclass
# optional stats and class_by's
for stat in stats: # eg f1_weighted, recall_perclass
if stat in self.series: results[stat] = stats[stat]
for stat in classes_by:
classes_by_stat = 'classes_by_'+stat
if classes_by_stat in self.series: results[classes_by_stat] = classes_by[stat]
# sendit!
outfile = os.path.join(self.outdir,self.outfile).format(epoch=curr_epoch)
if log['best'] or not self.best_only:
os.makedirs(os.path.dirname(outfile), exist_ok=True)
self.save_validation_results(outfile, results)
def save_validation_results(self, outfile, results):
if outfile.endswith('.json'): self._save_validation_results_json(outfile,results)
if outfile.endswith('.mat'): self._save_validation_results_mat(outfile,results)
if outfile.endswith('.h5'): self._save_validation_results_hdf(outfile,results)
def _save_validation_results_json(self,outfile,results):
for series in results: # convert numpy arrays to list
if isinstance(results[series], np.ndarray):
results[series] = results[series].tolist()
# write json file
with open(outfile, 'w') as f:
json.dump(results, f)
def _save_validation_results_mat(self,outfile,results):
# index ints
idx_data = ['input_classes','output_classes','training_classes']
idx_data += ['classes_by_'+stat for stat in 'f1 recall precision count'.split()]
str_data = ['class_labels','image_fullpaths','image_basenames','training_image_fullpaths','training_image_basenames']
for series in results:
if isinstance(results[series], np.ndarray): results[series] = results[series].astype('f4')
elif isinstance(results[series], np.float64): results[series] = results[series].astype('f4')
elif series in str_data: results[series] = np.asarray(results[series], dtype='object')
elif series in idx_data: results[series] = np.asarray(results[series]).astype('u4') + 1
# matlab is not zero-indexed, so increment all the indicies by 1
savemat(outfile, results, do_compression=True)
def _save_validation_results_hdf(self,outfile,results):
attrib_data = ['model_id', 'timestamp']
attrib_data += 'f1_weighted recall_weighted precision_weighted f1_macro recall_macro precision_macro'.split()
int_data = ['input_classes', 'output_classes', 'training_classes']
int_data += 'counts_perclass val_counts_perclass train_counts_perclass'.split()
int_data += ['classes_by_'+stat for stat in 'f1 recall precision count'.split()]
string_data = ['class_labels', 'image_fullpaths', 'image_basenames', 'training_image_fullpaths', 'training_image_basenames']
with h5.File(outfile, 'w') as f:
meta = f.create_dataset('metadata', data=h5.Empty('f'))
for series in results:
if series in attrib_data: meta.attrs[series] = results[series]
elif series in string_data: f.create_dataset(series, data=np.string_(results[series]), compression='gzip', dtype=h5.string_dtype())
elif series in int_data: f.create_dataset(series, data=results[series], compression='gzip', dtype='int16')
elif isinstance(results[series],np.ndarray):
f.create_dataset(series, data=results[series], compression='gzip', dtype='float16')
else: raise UserWarning('hdf results: WE MISSED THIS ONE: {}'.format(series))
## Running ##
def save_run_results(input_images, output_scores, class_labels, timestamp, outdir, outfile, model_id=None, input_obj=None):
output_classranks = np.max(output_scores, axis=1)
output_classes = np.argmax(output_scores, axis=1)
assert output_scores.shape[0] == len(output_classes), 'wrong number inputs-to-outputs'
assert output_scores.shape[1] == len(class_labels), 'wrong number of class labels'
results = dict(version='v3',
model_id=model_id,
timestamp=timestamp,
class_labels=class_labels,
input_images=input_images,
output_classes=output_classes,
output_scores=output_scores)
outfile = os.path.join(outdir, outfile)
if isinstance(input_obj,ifcb.Pid):
bin_obj = input_obj
results['bin_id'] = bin_obj.pid
results['roi_numbers'] = [ifcb.Pid(img).target for img in input_images]
outfile_dict = dict(BIN_ID=bin_obj.pid, INPUT_SUBDIRS=bin_obj.namespace,
BIN_YEAR=bin_obj.year, BIN_DATE=bin_obj.yearday)
outfile = outfile.format(**outfile_dict).replace(2*os.sep,os.sep)
os.makedirs(os.path.dirname(outfile), exist_ok=True)
_save_run_results(outfile, results)
else: # ImageDataset
if '{INPUT_SUBDIRS}' in outfile:
dir_groups = {}
input_src = input_obj if os.path.isdir(input_obj) else ''
for img_path,img_classidx,img_scores in zip(input_images,output_classes,output_scores):
parent_dir = os.path.dirname(img_path.replace(input_src, ''))#+os.sep
if parent_dir not in dir_groups:
dir_groups[parent_dir] = {k: v if k not in ['input_images','output_classes','output_scores'] else [] for k,v in results.items()}
dir_groups[parent_dir]['input_images'].append(os.path.basename(img_path))
dir_groups[parent_dir]['output_classes'].append(img_classidx)
dir_groups[parent_dir]['output_scores'].append(img_scores)
for parent_dir,sub_results in dir_groups.items():
sub_outfile = outfile.format(INPUT_SUBDIRS=parent_dir)
os.makedirs(os.path.dirname(sub_outfile),exist_ok=True)
sub_results['output_classes'] = np.asarray(sub_results['output_classes'], dtype=results['output_classes'].dtype)
sub_results['output_scores'] = np.asarray(sub_results['output_scores'], dtype=results['output_scores'].dtype)
_save_run_results(sub_outfile, sub_results)
else: #easy
os.makedirs(os.path.dirname(outfile), exist_ok=True)
_save_run_results(outfile, results)
def _save_run_results(outfile, results):
# handles .json, .mat, .h5 files
ext = os.path.splitext(outfile)[-1]
assert ext in ['.json','.mat','.h5'], 'output fileformat "{}" not valid'.format(ext)
def _save_run_results_json(outfile, results):
# results: model_id timestamp class_labels (bin + roi_numbers)
# input_images output_classes output_scores
output = dict(version = results['version'],
model_id = results['model_id'],
timestamp = results['timestamp'],
class_labels = results['class_labels'],
output_scores = results['output_scores'].tolist(),
output_classes = results['output_classes'].tolist() )
if 'bin_id' in results:
output['bin_id'] = results['bin_id']
output['roi_numbers'] = results['roi_numbers']
else:
output['input_images'] = results['input_images']
with open(outfile, 'w') as f:
json.dump(output, f)
def _save_run_results_mat(outfile, results):
# results: model_id timestamp class_labels (bin + roi_numbers)
# input_images output_classes output_scores
output=dict()
# increment indexes, since matlab is not zero-indexed
output['output_classes'] = results['output_classes'].astype('u4')+1
output['version'] = results['version']
output['model_id'] = results['model_id']
output['timestamp'] = results['timestamp']
output['output_scores'] = results['output_scores'].astype('f4')
output['class_labels'] = np.asarray(results['class_labels'], dtype='object')
if 'bin_id' in results:
output['bin_id'] = results['bin_id']
output['roi_numbers'] = results['roi_numbers']#.astype('u4') #not numpy yet, but thats fine it seems
else:
output['input_images'] = np.asarray(results['input_images'], dtype='object')
savemat(outfile, output, do_compression=True)
def _save_run_results_hdf(outfile, results):
# results: model_id timestamp class_labels (bin + roi_numbers)
# input_images output_classes output_scores
with h5.File(outfile, 'w') as f:
meta = f.create_dataset('metadata', data=h5.Empty('f'))
meta.attrs['version'] = results['version']
meta.attrs['model_id'] = results['model_id']
meta.attrs['timestamp'] = results['timestamp']
f.create_dataset('output_classes', data=results['output_classes'], compression='gzip', dtype='float16')
f.create_dataset('output_scores', data=results['output_scores'], compression='gzip', dtype='float16')
f.create_dataset('class_labels', data=np.string_(results['class_labels']), compression='gzip', dtype=h5.string_dtype())
if results['bin_id']:
meta.attrs['bin_id'] = results['bin_id']
f.create_dataset('roi_numbers', data=results['roi_numbers'], compression='gzip', dtype='uint16')
else:
f.create_dataset('input_images', data=np.string_(results['input_images']), compression='gzip', dtype=h5.string_dtype())
if outfile.endswith('.json'): _save_run_results_json(outfile, results)
if outfile.endswith('.mat'): _save_run_results_mat(outfile, results)
if outfile.endswith('.h5'): _save_run_results_hdf(outfile, results)
class SaveTestResults(ptl.callbacks.base.Callback):
def __init__(self, outdir, outfile, timestamp):
self.outdir = outdir
self.outfile = outfile
self.timestamp = timestamp
def on_test_end(self, trainer, pl_module):
RRs = trainer.callback_metrics['RunResults']
# RunResult rr: inputs, outputs, bin_id
if not isinstance(RRs,list):
RRs = [RRs]
for rr in RRs:
input_obj = rr.input_obj
output_scores = rr.outputs
input_images = rr.inputs
model_id = pl_module.hparams.model_id
class_labels = pl_module.hparams.classes
save_run_results(input_images, output_scores, class_labels, self.timestamp, self.outdir, self.outfile, model_id, input_obj)