-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path973.k-closest-points-to-origin.py
44 lines (40 loc) · 1.44 KB
/
973.k-closest-points-to-origin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#
# @lc app=leetcode id=973 lang=python3
#
# [973] K Closest Points to Origin
#
# @lc code=start
# TAGS: Divide and Conquer, Heap, Sort
# REVIEWME: typical Heap problem. There is a divide and conquer solution in the article
class Solution:
# 660 ms, 94%. O(NlogN) because of sorting
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
def custom_key(xy):
x, y = xy
return x**2 + y**2
points.sort(key=custom_key)
return points[:K]
# 1160 ms, 7.5%. Priority Queue. O(N logK). Space O(K).
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
def custom_key(xy):
x, y = xy
return x**2 + y**2
import queue
storage = queue.PriorityQueue()
for point in points:
storage.put((-custom_key(point), point))
if storage.qsize() > K: storage.get()
rv = [storage.get()[1] for _ in range(K)]
return rv
# 656 ms, 95.55%. Similar to above. Heapq. O(NlogK). Space O(K)
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
storage = []
heapq.heapify(storage)
for x, y in points:
dist = -(x*x + y*y)
if len(storage) < K:
heapq.heappush(storage, (dist, (x,y)))
else:
heapq.heappushpop(storage, (dist, (x,y)))
return [point for d, point in storage]
# @lc code=end