-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path743.network-delay-time.py
46 lines (41 loc) · 1.51 KB
/
743.network-delay-time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#
# @lc app=leetcode id=743 lang=python3
#
# [743] Network Delay Time
#
# @lc code=start
# TAGS: Heap, BFS, DFS, Graph
# REVIEWME: Heap, Graph
class Solution:
# 448 ms, 84.78%. Time: O(ElogE). Space: O(N + E). E is len(times). Dijkstra Algorithm
def networkDelayTime(self, times: List[List[int]], N: int, K: int) -> int:
graph = collections.defaultdict(dict)
for u, v, w in times:
graph[u][v] = w
visited = {}
heap = [(0, K)]
while heap:
cur_time, node = heapq.heappop(heap)
if node in visited: continue
visited[node] = cur_time
for nei, time in graph[node].items():
if nei in visited: continue
heapq.heappush(heap, (time + cur_time, nei))
return max(visited.values()) if len(visited) == N else -1
# 448 ms, 84.78%. Time: O(NlogN). Space: O(N). Same as above but using set instead
def networkDelayTime(self, times: List[List[int]], N: int, K: int) -> int:
graph = collections.defaultdict(dict)
for u, v, w in times:
graph[u][v] = w
visited = set()
heap = [(0, K)]
while heap:
cur_time, node = heapq.heappop(heap)
visited.add(node)
if len(visited) == N:
return cur_time
for nei, time in graph[node].items():
if nei in visited: continue
heapq.heappush(heap, (time + cur_time, nei))
return -1
# @lc code=end