-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path57.insert-interval.py
79 lines (69 loc) · 2.96 KB
/
57.insert-interval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#
# @lc app=leetcode id=57 lang=python3
#
# [57] Insert Interval
#
# @lc code=start
# TAGS: Array, Sort, Greedy
# REVIEWME: Hard, Pythonic, Clever.
class Solution:
"""
3 Clean solutions from lee:
https://leetcode.com/problems/insert-interval/discuss/21622/7%2B-lines-3-easy-solutions
"""
# 96 ms, 35.34 %. Time and Space: O(N) although we use binary search just because we need to combine at the end anyway
def insert(self, intervals: List[List[int]], newInterval: List[int]) -> List[List[int]]:
if not intervals:
return [newInterval]
if newInterval[0] > intervals[-1][-1]:
return intervals + [newInterval]
if newInterval[1] < intervals[0][0]:
return [newInterval] + intervals
def search(target):
lo, hi = 0, len(intervals)
while lo < hi:
mid = (lo + hi) // 2
if intervals[mid][0] < target:
lo = mid + 1
else:
hi = mid
return lo
start = search(newInterval[0])
end = search(newInterval[1])
# If not the first index and smaller than the previous end => move start back 1 index. This will:
# 1. merge with the previous of that's the case
# 2. create a new array if that's not the case
if start and intervals[start - 1][1] >= newInterval[0]:
start -= 1
# Check if new interval ending is smaller than current start:
# If that's the case, it will create a new array or merge with the previous
# Else, it will merge with the current.
if end == len(intervals) or intervals[end][0] > newInterval[1]:
end -= 1
if start == -1:
return [[newInterval[0], max(newInterval[1], intervals[end][1])]] + intervals[end + 1:]
return intervals[:start] + [[min(newInterval[0], intervals[start][0]), max(newInterval[1], intervals[end][1])]] + intervals[end + 1:]
# Very Clean solution from lee215. Time and Space: O(N)
def insert(self, intervals, newInterval):
s, e = newInterval
parts = merge, left, right = [], [], []
for i in intervals:
# Very pyhonic.
# 0 when both are False,
# 1 when left is correct,
# -1 when right is correct.
parts[(i[-1] < s) - (i[0] > e)].append(i)
if merge:
s = min(s, merge[0][0])
e = max(e, merge[-1][-1])
return left + [[s, e]] + right
# Very Clean solution from lee215. Time and Space: O(N)
def insert(self, intervals, newInterval):
s, e = newInterval
left = [i for i in intervals if i[-1] < s]
right = [i for i in intervals if i[0] > e]
if left + right != intervals:
s = min(s, intervals[len(left)][0])
e = max(e, intervals[~len(right)][-1])
return left + [[s, e]] + right
# @lc code=end