-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path425.py
88 lines (73 loc) · 2.68 KB
/
425.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# TAGS: Premium, Back Tracking, Trie
# REVIEWME: Back Tracking, Trie, Hard
import collections
class Solution:
"""
Need to look at solution article to write the first solution.
"""
# 400 ms, 68.03%. Time: O(N*26^L*L). Space: O(N*L+N*L/2)
def wordSquares(self, words: List[str]) -> List[List[str]]:
self.ans = []
self.length = len(words[0])
self.build_prefix_hashtable(words)
for word in words:
self.square = [word]
self.back_track()
return self.ans
def back_track(self, step=1):
if step == self.length:
self.ans.append(self.square[:])
return
prefix = "".join(word[step] for word in self.square)
for word in self.get_words_with_prefix(prefix):
self.square.append(word)
self.back_track(step + 1)
self.square.pop()
def build_prefix_hashtable(self, words):
self.prefix_hashtable = collections.defaultdict(set)
for word in words:
for prefix in (word[:i] for i in range(len(word))):
self.prefix_hashtable[prefix].add(word)
def get_words_with_prefix(self, prefix):
return self.prefix_hashtable[prefix]
class Solution:
"""Trie solution"""
def wordSquares(self, words: List[str]) -> List[List[str]]:
self.words = words
self.N = len(words[0])
self.buildTrie(self.words)
results = []
word_squares = []
for word in words:
word_squares = [word]
self.backtracking(1, word_squares, results)
return results
def buildTrie(self, words):
self.trie = {}
for wordIndex, word in enumerate(words):
node = self.trie
for char in word:
if char in node:
node = node[char]
else:
newNode = {}
newNode['#'] = []
node[char] = newNode
node = newNode
node['#'].append(wordIndex)
def backtracking(self, step, word_squares, results):
if step == self.N:
results.append(word_squares[:])
return
prefix = ''.join([word[step] for word in word_squares])
for candidate in self.getWordsWithPrefix(prefix):
word_squares.append(candidate)
self.backtracking(step+1, word_squares, results)
word_squares.pop()
def getWordsWithPrefix(self, prefix):
node = self.trie
for char in prefix:
if char not in node:
return []
node = node[char]
return [self.words[wordIndex] for wordIndex in node['#']]