-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path310.minimum-height-trees.py
65 lines (56 loc) · 1.93 KB
/
310.minimum-height-trees.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#
# @lc app=leetcode id=310 lang=python3
#
# [310] Minimum Height Trees
#
# @lc code=start
# TAGS: BFS, Graph
# REVIEWME: BFS, Graph, Topology Sorting
class Solution:
# LTE. Time: O(V*E). Space: O(E)
def findMinHeightTrees(self, n: int, edges: List[List[int]]) -> List[int]:
graph = collections.defaultdict(list)
for v1, v2 in edges:
graph[v1].append(v2)
graph[v2].append(v1)
def get_height(node, parent=-1):
height = 0
for next_node in graph[node]:
if next_node == parent: continue
height = max(height, get_height(next_node, node))
return height + 1
ans = []
min_height = float('inf')
for i in range(n):
height = get_height(i)
if height > min_height: continue
elif height < min_height:
ans = []
min_height = height
ans.append(i)
return ans
# 228 ms, 90.87%. Time and Space: O(V)
# From article. topology sorting. trim 1 layer of leaves at a time
def findMinHeightTrees(self, n: int, edges: List[List[int]]) -> List[int]:
if n < 2:
return list(range(n))
graph = collections.defaultdict(set)
for v1, v2 in edges:
graph[v1].add(v2)
graph[v2].add(v1)
leaves = []
for v, e in graph.items():
if len(e) == 1:
leaves.append(v)
remaining_nodes = n
while remaining_nodes > 2:
remaining_nodes -= len(leaves)
new_leaves = []
for leaf in leaves:
for neighbor in graph[leaf]:
graph[neighbor].discard(leaf)
if len(graph[neighbor]) == 1:
new_leaves.append(neighbor)
leaves = new_leaves
return leaves
# @lc code=end