-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path222.count-complete-tree-nodes.py
90 lines (82 loc) · 2.74 KB
/
222.count-complete-tree-nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#
# @lc app=leetcode id=222 lang=python3
#
# [222] Count Complete Tree Nodes
#
# @lc code=start
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
# TAGS: Binary Search, Tree
# REVIEWME:
class Solution:
"""
There are 3 solutions in this file
1. O(N) using queue
2. O(logN logN) using nested Binary search
2. O(logN logN) using nested Binary search (Optimal)
"""
# 204 ms, 5.19% O(N)
def countNodes(self, root: TreeNode) -> int:
count = 0
queue = [root]
for node in queue:
if node:
count += 1
queue.extend([node.right, node. left])
return count
# 128 ms, 6.04% O(logN logN) but slow because of the str operation
def countNodes(self, root: TreeNode) -> int:
if not root: return 0
D = 0
node = root
while node:
node = node.left
D += 1
# binary_search
lo, hi = 0, 2**(D-1)-1
while lo < hi:
mid = (lo + hi)//2
rv = self.binary_search(root, mid, D)
if rv == -1:
lo = mid + 1
elif rv == 1:
hi = mid
elif rv == 0:
lo = mid
break
return sum(2**d for d in range(D-1)) + lo + 1
# binary_search the tree
def binary_search(self, root, number, depth):
mem1 = root
mem2 = number
number = format(number, f'0{depth-1}b')
for digit in number[:-1]:
root = root.left if digit == '0' else root.right
if number[-1] == '0' and not root.left: return 1 # next node is not available
if number[-1] == '1' and not root.right: return 1 # next node is not available
if number[-1] == '0' and not root.right: return 0 # right node
if number[-1] == '1' and root.right and self.binary_search(mem1, mem2+1, depth) == 1: return 0 # right node
return -1
# 64 ms, 99% best and most pythonic. O(logN logN)
def countNodes(self, root: TreeNode) -> int:
if not root: return 0
right_depth = self.get_depth(root.right)
left_depth = self.get_depth(root.left)
if right_depth == left_depth:
return 2**left_depth + self.countNodes(root.right)
else:
return 2**right_depth + self.countNodes(root.left)
def get_depth(self, node):
if not node: return 0
return 1 + self.get_depth(node.left)
# @lc code=end