-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path1605.find-valid-matrix-given-row-and-column-sums.py
39 lines (35 loc) · 1.33 KB
/
1605.find-valid-matrix-given-row-and-column-sums.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#
# @lc app=leetcode id=1605 lang=python3
#
# [1605] Find Valid Matrix Given Row and Column Sums
#
# @lc code=start
# TAGS: Greedy
class Solution:
"""
This is a Greedy problem. Proof is not easy which can be found here:
https://leetcode.com/problems/find-valid-matrix-given-row-and-column-sums/discuss/876845/JavaC%2B%2BPython-Easy-and-Concise-with-Prove
"""
# 1172 ms, 33.74%. Time:O(MN). Space:O(MN)
def restoreMatrix(self, rowSum: List[int], colSum: List[int]) -> List[List[int]]:
R, C = len(rowSum), len(colSum)
ans = [[0] * C for _ in range(R)]
for r in range(R):
for c in range(C):
ans[r][c] = min(rowSum[r], colSum[c])
rowSum[r] -= ans[r][c]
colSum[c] -= ans[r][c]
return ans
# 684 ms, 96.81%. Time:O(MN). Space:O(MN). This is faster because process time is O(M+N)
def restoreMatrix(self, rowSum: List[int], colSum: List[int]) -> List[List[int]]:
R, C = len(rowSum), len(colSum)
ans = [[0] * C for _ in range(R)]
r = c = 0
while r < R and c < C:
ans[r][c] = min(rowSum[r], colSum[c])
rowSum[r] -= ans[r][c]
colSum[c] -= ans[r][c]
if rowSum[r] == 0: r += 1
if colSum[c] == 0: c += 1
return ans
# @lc code=end