-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path1074.number-of-submatrices-that-sum-to-target.py
43 lines (37 loc) · 1.36 KB
/
1074.number-of-submatrices-that-sum-to-target.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#
# @lc app=leetcode id=1074 lang=python3
#
# [1074] Number of Submatrices That Sum to Target
#
# @lc code=start
# TAGS: Array, Dynamic Programming, Sliding Window
# REVIEWME: Array, Dynamic Programming, Sliding Window
class Solution:
"""
Approach:
A harder version of #560.A bit tricky to wrap your head around.
First, cummulate both row and col into a matrix
Second, iterate over either row or column and keep track of visited.
"""
# 932 ms, 64.48%. Time: O(R*R*C). Space: O(R*C)
def numSubmatrixSumTarget(self, matrix: List[List[int]], target: int) -> int:
R, C = len(matrix), len(matrix[0])
prefix_sum = [[0] * (C + 1) for _ in range(R + 1)]
# cummulative sum by row
for r in range(R):
for c in range(C):
prefix_sum[r + 1][c + 1] = prefix_sum[r + 1][c] + matrix[r][c]
# cummulative sum by col
for c in range(C):
for r in range(R):
prefix_sum[r + 1][c + 1] += prefix_sum[r][c + 1]
total = 0
for r2 in range(R + 1):
for r1 in range(r2):
visited = collections.defaultdict(int)
for c in range(C + 1):
cur = prefix_sum[r2][c] - prefix_sum[r1][c]
total += visited[cur]
visited[target + cur] += 1
return total
# @lc code=end