-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinc_LW_e_clr.m
353 lines (311 loc) · 13.4 KB
/
inc_LW_e_clr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
% Calculates clear sky atmospheric emissivity based on a specified method
%
% RELEASE NOTES
% Version 1.0 Written by Mark Raleigh ([email protected]), Oct 2013)
% Version 2.0 Overhauled by Mark Raleigh (Feb 2015) to have structure inputs
% and to correct errors in the Flerchinger formulas
%
% SYNTAX
% e_clr = inc_LW_e_clr(M_INPUTS, M_PARAMS, M_OPTIONS)
%
% INPUTS
% M_INPUTS = structure with the following variables (must have exact name)
% Ta = air temperature, K or C (will assume C if mean is less than 40 C)
% eo = vapor pressure (kPa) - optional if RH is provided and option Method_vpr>0
% RH = fractional relative humidity
% Qsi = incoming shortwave radiation (W m^-2)
%
% M_PARAMS = structure with the coefficients used for the method. If you
% want to use the defaults, set M_PARAMS.P1_clr = []; or simply exclude the
% variable in the structure. Variables include:
% STA_Elev = elevation (m)
% P1_clr = 1xn array of parameter values for PARAMETER 1 (method-specific) for clear sky method
% P2_clr = 1xn array of parameter values for PARAMETER 2 (method-specific) for clear sky method
% ...
% Pn_clr = 1xn array of parameter values for PARAMETER n (method-specific) for clear sky method
%
% M_OPTIONS = structure with options for the
% Method_vpr = if vapor pressure (eo) is not supplied in M_INPUTS,
% need to specify how to calculate it based on Ta and RH. Methods:
% 0 = do not calculate (eo is supplied)
% 1 = calculate with Dozier and Marks approach
% 2 = calculate with Clausius-Clapeyron e_sat in mb (hPa) from Murray 1967
% Method_clr = enter code for clear-sky longwave method, where:
% 1 = Angstrom (1918)
% 2 = Brunt (1932)
% 3 = Brutsaert (1975)
% 4 = Garratt (1992)
% 5 = Idso and Jackson (1969) (Idso-1)
% 6 = Idso (1981) (Idso-2)
% 7 = Iziomon et al. (2003)
% 8 = Keding (1989)
% 9 = Niemela et al. (2001)
% 10 = Prata (1996)
% 11 = Satterlund (1979)
% 12 = Swinbank (1963)
% 13 = Dilley and O'Brien (1998)
%
% %%% additional methods from Juszak and Pellicciotti (2013)
% 14 = Maykut and Church (1973)
% 15 = Konzelmann et al. (1994)
% 16 = Dilley and O'Brien (A) (1998)
%
% %%% other methods
% 17 = Campbell and Norman (1998) as cited by Walter et al (2005)
% 18 = Long and Turner (2008) - based on Brutsaert (1975)
% 19 = Ohmura (1982) as cited by Howard and Stull 2013
% 20 = Efimova (1961) as cited by Key et al (1996)
%
% OUTPUTS
% e_clr = clear-sky emissivity of the atmosphere
%
% NOTES
% The list of LW methods 1-13 is populated based on Flerchinger et al. (2009).
% Additional empirical LW models may be added to this list.
function e_clr = inc_LW_e_clr(M_INPUTS, M_PARAMS, M_OPTIONS)
%% constants
stefan = 5.67 * (10^-8); % Stefan-Boltzmann constant (J/s/m^2/K^4)
T_C2K = 273.15; % conversion from C to K
% E_L2W = 41840/86400; % conversion from langleys/day to W/m2
%% Checks
if M_OPTIONS.Method_clr-floor(M_OPTIONS.Method_clr)~=0 || M_OPTIONS.Method_clr < 1 || M_OPTIONS.Method_clr>20
error('Invalid M_OPTIONS.Method_clr')
end
if M_OPTIONS.Method_vpr-floor(M_OPTIONS.Method_vpr)~=0 || M_OPTIONS.Method_vpr < 0 || M_OPTIONS.Method_vpr>2
error('Invalid M_OPTIONS.Method_vpr')
end
% Now check to see if Ta is in Celsius, and if so, convert to K
if nanmean(nanmean(M_INPUTS.Ta)) < 40
% then assume the input was in Celsius
M_INPUTS.Ta = M_INPUTS.Ta + T_C2K;
end
% Now check to make sure RH is in fractional
if isfield(M_INPUTS, 'RH')==1
if nanmean(nanmean(M_INPUTS.RH)) > 1
disp('Assuming RH was input in percent. Converting to fractional')
M_INPUTS.RH = M_INPUTS.RH/100;
end
end
%% Common variables
Ta = M_INPUTS.Ta;
RH = M_INPUTS.RH;
if M_OPTIONS.Method_vpr==0
if isfield(M_INPUTS, 'eo') ~=1
error('eo must be provided in inputs, or include RH and specify method for computing eo')
end
eo = M_INPUTS.eo;
% esat = M_INPUTS.esat;
elseif M_OPTIONS.Method_vpr==1
error('this has not been coded yet')
elseif M_OPTIONS.Method_vpr==2
% Clausius-Clapeyron e_sat in mb (hPa) from Murray 1967
sat_vap_pressure = 6.1078.*exp((17.2693882.*(Ta-T_C2K))./(Ta-35.86));
eo = M_INPUTS.RH .* sat_vap_pressure;
% Convert eo from hPa to kPa
eo = eo./10;
% esat = sat_vap_pressure./10;
end
%%%%%%% at this point, eo should be in kPa and Ta should be in K, RH should
%%%%%%% be fractional
% Prata (1996) approximation for precipitable water
w = 465 .* (eo./Ta); % note: corrected to be 465 instead of 4650 (error in Flerchinger Table 1)
%% Method-specific default parameters
if M_OPTIONS.Method_clr==1
% 1 = Angstrom (1918)
nparams = 3;
P(1) = 0.83; P(2) = 0.18; P(3) = 0.67; % note: corrected coefficient of P(3) to be 0.67 instead of 0.067 (error in Flerchinger Table 1)
elseif M_OPTIONS.Method_clr==2
% 2 = Brunt (1932)
nparams = 2;
P(1) = 0.52; P(2) = 0.205;
elseif M_OPTIONS.Method_clr==3
% 3 = Brutsaert (1975)
nparams = 2;
P(1) = 1.723; P(2) = (1/7);
elseif M_OPTIONS.Method_clr==4
% 4 = Garratt (1992)
nparams = 3;
P(1) = 0.79; P(2) = 0.17; P(3) = 0.96;
elseif M_OPTIONS.Method_clr==5
% 5 = Idso and Jackson (1969) (Idso-1)
nparams = 2;
P(1) = 0.261; P(2) = 0.00077;
elseif M_OPTIONS.Method_clr==6
% 6 = Idso (1981) (Idso-2)
nparams = 3;
P(1) = 0.70; P(2) = 5.95 .* (10.^-4); P(3) = 1500;
elseif M_OPTIONS.Method_clr==7
% 7 = Iziomon et al. (2003)
nparams = 6;
P(1) = 0.35; P(2) = 100; P(3) = 212; % low land site (P(3)=elev m)
P(4) = 0.43; P(5) = 115; P(6) = 1489; % higher elev site (P(6) = elev m)
elseif M_OPTIONS.Method_clr==8
% 8 = Keding (1989)
nparams = 3;
P(1) = 0.92; P(2) = 0.7; P(3) = 1.2;
elseif M_OPTIONS.Method_clr==9
% 9 = Niemela et al. (2001)
nparams = 4;
P(1) = 0.72; P(2) = 0.09; P(3) = 0.2; P(4) = 0.76;
elseif M_OPTIONS.Method_clr==10
% 10 = Prata (1996)
nparams = 3;
P(1) = 1.2; P(2) = 3; P(3) = 0.5;
elseif M_OPTIONS.Method_clr==11
% 11 = Satterlund (1979)
nparams = 2;
P(1) = 1.08; P(2) = 2016;
elseif M_OPTIONS.Method_clr==12
% 12 = Swinbank (1963)
nparams = 2;
P(1) = (5.31 * (10^-13)); P(2) = 6;
elseif M_OPTIONS.Method_clr==13
% 13 = Dilley and O'Brien (1998)
nparams = 3;
P(1) = 59.38; P(2) = 113.7; P(3) = 96.96;
elseif M_OPTIONS.Method_clr==14
% 14 = Maykut and Church (1973)
nparams = 1;
P(1) = 0.7855;
elseif M_OPTIONS.Method_clr==15
% 15 = Konzelmann et al. (1994)
nparams = 3;
P(1) = 0.23; P(2) = 0.484; P(3) = 1.8;
elseif M_OPTIONS.Method_clr==16
% 16 = Dilley and O'Brien (A) (1998)
nparams = 3;
P(1) = 2.232; P(2) = -1.875; P(3) = 0.7356;
elseif M_OPTIONS.Method_clr==17
% 17 = Campbell and Norman (1998) as cited by Walter et al (2005)
nparams = 2;
P(1) = 0.72 - 0.005*T_C2K; % modified so Ta is in (K) instead of (C) ....should be -0.6458 after the maths...
P(2) = 0.005;
elseif M_OPTIONS.Method_clr==18
% 18 = Long and Turner (2008) - based on Brutsaert (1975)
nparams = 5;
%%% simplify the k-value determination - use one value for day, one for
%%% night (where night/day is based on threshold in Qsi data)
P(1) = 1.18; % daytime k value, varies diurnally (and likely spatially) - see Fig 2
P(2) = 1.28; % nighttime k value
P(3) = (1.39e-11 + 3.36e-12 + 1.47e-11 + 4.07e-12)/4; % "a" coefficient - average of four datasets
P(4) = (4.8769+5.1938+4.8768+5.1421)/4; % "b" coefficient - average of four datasets
P(5) = (1/7); % brutsaert exponent
elseif M_OPTIONS.Method_clr==19
% 19 = Ohmura (1982) as cited by Howard and Stull 2013
nparams = 2;
P(1) = 8.733 * 10^-3; P(2) = 0.788;
elseif M_OPTIONS.Method_clr==20
% 20 = Efimova (1961) as cited by Key et al (1996)
nparams = 2;
P(1) = 0.746;
P(2) = 0.0066*10; % need to multiply by 10 to account for e in mb isntead of kPa
end
%%% check for existence of parameters and set default values if no params were specified
params_spec = zeros(1,nparams); % initialize variable to get size of each param
for j=1:nparams
%%% check if this parameter is a field
EXcheck = isfield(M_PARAMS, ['P' num2str(j) '_clr']);
%%% if not, assign the default value
if EXcheck==0
eval(['M_PARAMS.P' num2str(j) '_clr = P(j);']);
Px = P(j);
else
eval(['Px = M_PARAMS.P' num2str(j) '_clr;']);
end
if isarray(Px) ~=1 && numel(Px)~=1
error('M_PARAMS.Pn_clr variables should be single values or arrays')
end
params_spec(1,j) = numel(Px);
end
%%% assemble parameter sets
if nanvar(params_spec)~=0
error('All parameter sets must have the same number of elements')
else
if params_spec(1,1)>1
%%% need to do repeat matrix
for j=1:nparams
eval(['Px = M_PARAMS.P' num2str(j) '_clr;']);
if size(Px,2)==1 && size(Px,1)>1
Px = Px';
end
eval(['M_PARAMS.P' num2str(j) '_clr = repmat(Px, size(To,1), 1);']);
end
end
end
%% Code
if M_OPTIONS.Method_clr==1
% 1 = Angstrom (1918)
e_clr = (M_PARAMS.P1_clr - M_PARAMS.P2_clr .* 10.^(-1.* M_PARAMS.P3_clr .*eo));
elseif M_OPTIONS.Method_clr==2
% 2 = Brunt (1932)
e_clr = (M_PARAMS.P1_clr + M_PARAMS.P2_clr .*sqrt(eo));
elseif M_OPTIONS.Method_clr==3
% 3 = Brutsaert (1975)
e_clr = M_PARAMS.P1_clr .* (eo./Ta).^(M_PARAMS.P2_clr);
elseif M_OPTIONS.Method_clr==4
% 4 = Garratt (1992)
e_clr = M_PARAMS.P1_clr - M_PARAMS.P2_clr .*exp(-1.* M_PARAMS.P3_clr .*eo);
elseif M_OPTIONS.Method_clr==5
% 5 = Idso and Jackson (1969) (Idso-1)
e_clr = 1 - M_PARAMS.P1_clr .*exp(-1.* M_PARAMS.P2_clr .*(Ta-T_C2K).^2);
elseif M_OPTIONS.Method_clr==6
% 6 = Idso (1981) (Idso-2)
e_clr = M_PARAMS.P1_clr + (M_PARAMS.P2_clr .* eo .* exp(M_PARAMS.P3_clr./Ta));
elseif M_OPTIONS.Method_clr==7
% 7 = Iziomon et al. (2003)
Mxz = (M_PARAMS.P4_clr-M_PARAMS.P1_clr)/(M_PARAMS.P6_clr-M_PARAMS.P3_clr);
Myz = (M_PARAMS.P5_clr-M_PARAMS.P2_clr)/(M_PARAMS.P6_clr-M_PARAMS.P3_clr);
X = Mxz .*(M_PARAMS.STA_Elev - M_PARAMS.P3_clr) + M_PARAMS.P1_clr;
Y = Myz .*(M_PARAMS.STA_Elev - M_PARAMS.P3_clr) + M_PARAMS.P2_clr;
e_clr = 1 - X.*exp(-Y.*eo./Ta);
elseif M_OPTIONS.Method_clr==8
% 8 = Keding (1989)
e_clr = M_PARAMS.P1_clr - M_PARAMS.P2_clr .*(10.^(-1.* M_PARAMS.P3_clr .*eo));
elseif M_OPTIONS.Method_clr==9
% 9 = Niemela et al. (2001)
e_clr = M_PARAMS.P1_clr + M_PARAMS.P2_clr .*(eo- M_PARAMS.P3_clr);
e_clr(eo<M_PARAMS.P3_clr) = M_PARAMS.P1_clr - M_PARAMS.P4_clr .* (eo(eo<M_PARAMS.P3_clr)-M_PARAMS.P3_clr);
elseif M_OPTIONS.Method_clr==10
% 10 = Prata (1996)
e_clr = 1 - (1+w).*exp(-1*(M_PARAMS.P1_clr + M_PARAMS.P2_clr .*w).^M_PARAMS.P3_clr);
elseif M_OPTIONS.Method_clr==11
% 11 = Satterlund (1979)
e_clr = M_PARAMS.P1_clr .*(1-exp(-((10.*eo).^(Ta/M_PARAMS.P2_clr)))); % note: corrected so that P2 paramter is in the exponent ^(Ta/P2), error in Flerchinger Table 1
elseif M_OPTIONS.Method_clr==12
% 12 = Swinbank (1963)
Lclr = M_PARAMS.P1_clr .* (Ta .^ M_PARAMS.P2_clr);
e_clr = Lclr./(stefan.*(Ta.^4)); % effective emissivity
elseif M_OPTIONS.Method_clr==13
% 13 = Dilley and O'Brien (1998)
Lclr = M_PARAMS.P1_clr + M_PARAMS.P2_clr .*((Ta/T_C2K).^6) + M_PARAMS.P3_clr .*sqrt(w./2.5); % note: corrected to be 2.5 instead of 25 (error in Flerchinger Table 1)
e_clr = Lclr./(stefan.*(Ta.^4)); % effective emissivity
elseif M_OPTIONS.Method_clr==14
% 14 = Maykut and Church (1973)
e_clr = M_PARAMS.P1_clr;
elseif M_OPTIONS.Method_clr==15
% 15 = Konzelmann et al. (1994)
e_clr = M_PARAMS.P1_clr + M_PARAMS.P2_clr .* (1000*eo./Ta).^(M_PARAMS.P3_clr);
elseif M_OPTIONS.Method_clr==16
% 16 = Dilley and O'Brien (A) (1998)
e_clr = 1 - exp(-1.66.*(M_PARAMS.P1_clr + M_PARAMS.P2_clr .*(Ta/T_C2K) + M_PARAMS.P3_clr .*sqrt(w./2.5)));
elseif M_OPTIONS.Method_clr==17
% 17 = Campbell and Norman (1998) as cited by Walter et al (2005)
e_clr = M_PARAMS.P1_clr + M_PARAMS.P2_clr.*Ta;
elseif M_OPTIONS.Method_clr==18
% 18 = Long and Turner (2008) - based on Brutsaert (1975)
k_array = Ta*0 + M_PARAMS.P1_clr; % set all values to daytime k
if isfield(M_INPUTS, 'Qsi')==1
k_array(M_INPUTS.Qsi<50) = M_PARAMS.P2_clr; % set night time values to night k
end
Ccoeff = k_array + M_PARAMS.P3_clr.*(RH.*100).^M_PARAMS.P4_clr;
e_clr = Ccoeff .* (eo.*10./Ta).^M_PARAMS.P5_clr; % times 10 to convert from kPa to mb
elseif M_OPTIONS.Method_clr==19
% 19 = Ohmura (1982) as cited by Howard and Stull 2013
e_clr = M_PARAMS.P1_clr .* Ta.^(M_PARAMS.P2_clr);
elseif M_OPTIONS.Method_clr==20
% 20 = Efimova (1961) as cited by Key et al (1996)
e_clr = M_PARAMS.P1_clr + M_PARAMS.P2_clr .*eo;
end
%%% apply limits and recalculate Lclr
e_clr(e_clr<0) = 0;
e_clr(e_clr>1) = 1;