-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathIBufWr.cpp
205 lines (175 loc) · 7.4 KB
/
IBufWr.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// IBufWr, an interpolating buffer writer
// Pierre Alexandre Tremblay, 2018
// porting from the bespoke Max object ipoke~ v4.1
// (http://www.no-tv.org/MaxMSP/) thanks to the FluCoMa project funded by the
// European Research Council (ERC) under the European Union’s Horizon 2020
// research and innovation programme (grant agreement No 725899)
#include "SC_PlugIn.h"
static InterfaceTable *ft;
static inline bool checkBuffer(Unit *unit, const float *bufferData,
uint32 bufferChannels, uint32 expectedChannels,
int inNumSamples) {
if (!bufferData) // if the pointer to the data is null, exit
goto handle_failure;
// if the number of input streams in the input array (passed here as
// expectedChannels) is larger than the number of channels in the buffer, exit
if (expectedChannels > bufferChannels) { // moan if verbose
if (unit->mWorld->mVerbosity > -1 && !unit->mDone)
Print("Buffer UGen channel mismatch: expected %i, yet buffer has %i "
"channels\n",
expectedChannels, bufferChannels);
goto handle_failure;
}
return true; // exit positively
handle_failure: // exit negatively
// declares the UGEN as done and fills the output buffer with 0s
unit->mDone = true;
ClearUnitOutputs(unit, inNumSamples);
return false;
}
struct IBufWr : public Unit {
float m_fbufnum;
SndBuf *m_buf;
long m_last_index;
long l_nb_val;
double *m_values;
double *l_coeffs;
};
void IBufWr_Ctor(IBufWr *unit);
void IBufWr_Dtor(IBufWr *unit);
void IBufWr_next(IBufWr *unit, int n);
void IBufWr_Ctor(IBufWr *unit) {
// declares the unit buffer number as unassigned (<0)
unit->m_fbufnum = -1.f;
// defines the counters and initialize them to 0
unit->m_values = (double *)RTAlloc(unit->mWorld,
((unit->mNumInputs - 4) * sizeof(double)));
memset(unit->m_values, 0, ((unit->mNumInputs - 4) * sizeof(double)));
// defines the coefficients and initialize them to 0
unit->l_coeffs = (double *)RTAlloc(unit->mWorld,
((unit->mNumInputs - 4) * sizeof(double)));
memset(unit->l_coeffs, 0, ((unit->mNumInputs - 4) * sizeof(double)));
// initialize the other instance variables
unit->m_last_index = -1;
// defines the ugen in the tree
SETCALC(IBufWr_next);
// sends one sample of silence
ClearUnitOutputs(unit, 1);
}
void IBufWr_Dtor(IBufWr *unit) {
RTFree(unit->mWorld, unit->m_values);
RTFree(unit->mWorld, unit->l_coeffs);
}
void IBufWr_next(IBufWr *unit, int n) {
auto inputIndex = IN(1);
bool interpolate = static_cast<bool>(IN0(2));
double feedback = static_cast<double>(IN0(3));
GET_BUF // this macro, defined in SC_Unit.h, does all the sanity check, locks
// the buffer and assigns values to bufData, bufChannels, bufFrames
long numChannels =
unit->mNumInputs - 4; // minus 4 because the arguments are all passed
// after the input array
// other sanity check, mostly of size
if (!checkBuffer(unit, bufData, bufChannels, numChannels, n))
return;
double halfLife = static_cast<long>(static_cast<double>(bufFrames) * 0.5);
auto previousIndex = unit->m_last_index;
auto &values = unit->m_values;
auto &coefficients = unit->l_coeffs;
auto numberOfValues = unit->l_nb_val;
auto writeAverageValue = [&](long index) {
for (long chan = 0; chan < numChannels; ++chan) {
bufData[index * bufChannels + chan] =
zapgremlins(static_cast<float>((bufData[index * bufChannels + chan]
* feedback) + (values[chan] / numberOfValues)));
values[chan] = 0.0;
}
};
auto calculateCoefficients = [&](long step, int j) {
for (long chan = 0; chan < numChannels; ++chan) {
coefficients[chan] = (IN(chan + 4)[j] - values[chan]) / step;
}
};
auto fillGap = [&](long start, long end, long step) {
for (long i = start; i != end; i += step) {
for (long chan = 0; chan < numChannels; ++chan) {
if (interpolate) values[chan] += coefficients[chan];
bufData[i * bufChannels + chan] = zapgremlins(static_cast<float>(
(bufData[i * bufChannels + chan] * feedback) + values[chan]));
}
}
};
auto processSample = [&](double indexBuffer, int j) {
if (indexBuffer < 0.0) { // if the writing is stopped
if (previousIndex >= 0) { // and if it is the 1st one to be stopped
writeAverageValue(previousIndex);
previousIndex = -1;
}
} else {
// round the next index and make sure it is in the buffer's boundaries
auto index = static_cast<long>(indexBuffer);
while(index >= bufFrames) index -= bufFrames; //sc_wrap was misbehaving
if (previousIndex < 0) { // if it is the first index to write, resets the
// averaging and the values
previousIndex = index;
numberOfValues = 0;
}
if (index == previousIndex) { // if the index has not moved, accumulate
// the value to average later.
for (long chan = 0; chan < numChannels; ++chan)
values[chan] += IN(chan + 4)[j];
numberOfValues += 1;
} else { // if it moves
if (numberOfValues != 1) { // is there more than one value to average
for (long chan = 0; chan < numChannels; ++chan)
values[chan] /= numberOfValues; // if yes, calculate the average
numberOfValues = 1;
}
for (long chan = 0; chan < numChannels; ++chan)
bufData[previousIndex * bufChannels + chan] = zapgremlins(
static_cast<float>((bufData[previousIndex * bufChannels + chan]
* feedback) + values[chan])); // write the average value at the
// last index
long step = index - previousIndex; // calculate the step to do
if (step > 0) { // are we going up
if (step > halfLife) { // is it faster to go the other way round?
step -= bufFrames; // calculate the new number of steps
calculateCoefficients(step, j);
// Fill the gap to zero
fillGap(previousIndex - 1, -1, -1);
// Fill the gap from the top
fillGap(bufFrames - 1, index, -1);
} else { // if not, just fill the gaps
calculateCoefficients(step, j);
fillGap(previousIndex + 1, index, 1);
}
} else { // if we are going down
if (-step > halfLife) { // is it faster to go the other way round?
step += bufFrames; // calculate the new number of steps
calculateCoefficients(step, j);
// Fill the gap to the top
fillGap(previousIndex + 1, bufFrames, 1);
// Fill the gap from zero
fillGap(0, index, 1);
} else { // if not, just fill the gaps
calculateCoefficients(step, j);
fillGap(previousIndex - 1, index, -1);
}
}
for (long chan = 0; chan < numChannels; ++chan)
values[chan] = IN(chan + 4)[j]; // transfer the new previous value
}
previousIndex = index; // transfer the new previous address
}
};
for (int j = 0; j < n; ++j) {
double indexBuffer = *inputIndex++;
processSample(indexBuffer, j);
}
unit->m_last_index = previousIndex;
unit->l_nb_val = numberOfValues;
}
PluginLoad(IBufWrUGens) {
ft = inTable;
DefineDtorUnit(IBufWr);
}